Act7

Solo disponible en BuenasTareas
  • Páginas : 7 (1650 palabras )
  • Descarga(s) : 9
  • Publicado : 30 de junio de 2010
Leer documento completo
Vista previa del texto
Series de Tiempo 1. Requisitos de Estadística Descriptiva: a. Media, Mediana b. Desviación estándar c. Regresión lineal 2. Qué es una serie de tiempo a. Componentes de la Serie de Tiempo (tipos de variación): i. Tendencia secular ii. Variación estacional iii. Variación cíclica iv. Variación irregular b. Tendencia de una serie i. Lineal ii. No lineal c. Métodos de Suavizamiento de la Serie i.Promedios móviles ii. Promedios móviles ponderados iii. Suavizamiento exponencial d. Pronósticos y su precisión i. Promedios móviles ii. Promedios móviles ponderados iii. Suavizamiento exponencial

Series de Tiempo
Por serie de tiempo nos referimos a datos estadísticos que se recopilan, observan o registran en intervalos de tiempo regulares (diario, semanal, semestral, anual, entre otros). Eltérmino serie de tiempo se aplica por ejemplo a datos registrados en forma periódica que muestran, por ejemplo, las ventas anuales totales de almacenes, el valor trimestral total de contratos de construcción otorgados, el valor trimestral del PIB. a. Componentes de la serie de tiempo Supondremos que en una serie existen cuatro tipos básicos de variación, los cuales sobrepuestos o actuando enconcierto, contribuyen a los cambios observados en un período de tiempo y dan a la serie su aspecto errático. Estas cuatro componentes son: Tendencia secular, variación estacional, variación cíclica y variación irregular. Supondremos, además, que existe una relación multiplicativa entre estas cuatro componentes; es decir, cualquier valor de una serie es el producto de factores que se pueden atribuir alas cuatro componentes. 1. Tendencia secular: La tendencia secular o tendencia a largo plazo de una serie es por lo común el resultado de factores a largo plazo. En términos intuitivos, la tendencia de una serie de tiempo caracteriza el patrón gradual y consistente de las

variaciones de la propia serie, que se consideran consecuencias de fuerzas persistentes que afectan el crecimiento o lareducción de la misma, tales como: cambios en la población, en las características demográficas de la misma, cambios en los ingresos, en la salud, en el nivel de educación y tecnología. Las tendencias a largo plazo se ajustan a diversos esquemas. Algunas se mueven continuamente hacía arriba, otras declinan, y otras más permanecen igual en un cierto período o intervalo de tiempo. 2. Variaciónestacional: El componente de la serie de tiempo que representa la variabilidad en los datos debida a influencias de las estaciones, se llama componente estacional. Esta variación corresponde a los movimientos de la serie que recurren año tras año en los mismos meses (o en los mismos trimestres) del año poco más o menos con la misma intensidad. Por ejemplo: Un fabricante de albercas inflables espera pocaactividad de ventas durante los meses de otoño e invierno y tiene ventas máximas en los de primavera y verano, mientras que los fabricantes de equipo para la nieve y ropa de abrigo esperan un comportamiento anual opuesto al del fabricante de albercas. 3. Variación cíclica: Con frecuencia las series de tiempo presentan secuencias alternas de puntos abajo y arriba de la línea de tendencia que duranmás de un año, esta variación se mantiene después de que se han eliminado las variaciones o tendencias estacional e irregular. Un ejemplo de este tipo de variación son los ciclos comerciales cuyos períodos recurrentes dependen de la prosperidad, recesión, depresión y recuperación, las cuales no dependen de factores como el clima o las costumbres sociales. 4. Variación Irregular: Esta se debe afactores a corto plazo, imprevisibles y no recurrentes que afectan a la serie de tiempo. Como este componente explica la variabilidad aleatoria de la serie, es impredecible, es decir, no se puede esperar predecir su impacto sobre la serie de tiempo. Existen dos tipos de variación irregular: a) Las variaciones que son provocadas por acontecimientos especiales, fácilmente identificables, como las...
tracking img