Actividad dematematicas

Solo disponible en BuenasTareas
  • Páginas : 7 (1511 palabras )
  • Descarga(s) : 0
  • Publicado : 18 de marzo de 2011
Leer documento completo
Vista previa del texto
ACTIVIDAD DE DESARROLLO 1.1.2
PROBLEMARIO:
1.- Las dos mecanógrafas.
Se encargo a dos secretarias que copiaran un informe. Una de ellas hubiera hecho el trabajo en 2 horas y la otra en 3 horas. ¿En qué tiempo harán entre las dos el trabajo encargado?
(2x3)=62+3=5
1.2 x 60= 72 minutos

x2+x3=1
3 x +2 x=6
5X=6
x=65
×=1.2 hrs
2.- Tres cuartas partes de hombre.
A un capataz lepreguntaron cuántos hombres tenía su cuadrilla. El respondió de un modo bastante confuso: Los hombres no son muchos, tres cuartos de los que somos más tres cuartos de hombre, esa es toda nuestra gente. ¿Podría usted decir cuántos hombres había en esta cuadrilla?
34 +34
x34+34=
x= 34+1x=34
x=1- 34 = 34
x=43 1- 34
x=34 11- 34 = 3 /41- 34
×=3+1=4 hombres
3.- Por el ecuador.
Si ustedpudiera dar la vuelta a la tierra por el ecuador, el punto más alto de su cabeza describiría una trayectoria más larga que la descrita por sus pies. ¿Sería muy grande la diferencia entre ellas?
r=202 km
P=π x d
P=3.14 x 2 (20)
P=3.14 x 40=123.66 pie
r=20 +1.75
P=π x d
P=3.14 x 2 (21.75)
P=3.14 x 43.50=136.65 cabeza
D=10.99

4.- ¿Cuántos retratos?
Dibuje un retrato en un cartón y córteloen tiras. Supongamos que lo corta en nueve tiras con las imágenes de las diversas partes de la cara, pero de tal modo que dos tiras contiguas aunque pertenezcan a diferentes retratos, puede aplicarse la una a la otra, sin que se note discontinuidad en los trazos. Si para cada parte de la cara hace usted cuatro tiras diferentes tendrá 36 tiras, con las cuales juntándolas de nueve en nueve podráformar diversos retratos.
En los almacenes donde en un tiempo se vendían juegos de tiras para componer retratos, decían los dependientes que con loas 36 tiras se podían obtener mil fisonomías distintas. ¿Es esto cierto?

16
X4
64
X4
256
X4
1024
X4
4096
X4
16384
X4
65536
X4
262144

11 22 33 44= 4
21 22 33 44= 4
31 22 33 44= 4
41 22 33 44= 4
51 22 33 44= 4
61 22 3344= 4
71 22 33 44= 4
81 22 33 44= 4
91 22 33 44= 4
5.- ¿Qué edad tienen?
Hace 18 años Roberto era exactamente tres veces más viejo que su hijo. Espere; precisamente ahora, según mis noticias, es dos veces más viejo que su hijo. Y por ello no es difícil establecer cuántos años tiene Roberto y su hijo. ¿Cuántos años tienen si el hijo tiene ahora más de 30 años?
Procedimiento de solución: semultiplica 18 por tres veces la edad del padre, posteriormente se multiplica el doble al producto obtenido en la operación anterior para así obtener la edad del padre, y por dos veces la edad del hijo, de manera que:
18 x 3 veces la edad del padre obtenemos 54, ahora dos veces la edad del hijo, y este a su vez dos veces la edad del padre sobre el hijo obtenemos:
18 x 2 = 36 x 2 =72, asícomprobamos que la edad de Roberto mas los años de su hijo nos dan su edad total (54+18=72)
Papá hijo
36 años 9 años
54 años 18 años
72 años 36 años

6.- Un rompecabezas.
El rompecabezas será a base de cerillos. Tenemos tres montoncitos diferentes. En ellos hay en total 48 cerillos. No les digo cuántos hay en cada uno, pero observen lo siguiente: Si del primer montón paso al segundo tantoscerillos como hay en este último, luego del segundo paso al tercero tantos cerillos como hay en ese tercero, y por último, del tercero paso al primero tantos cerillos como existen ahora en ese primero, resulta que habrá el mismo número de cerillos en cada montón. ¿Cuántos cerillos había en cada montón al principio?
Procedimiento de solución: Se aplica el método de ensayo y error, es decir sebusca las tres cantidades hasta hallar la respuesta correcta.
1° 2° 3°
22 14 12

1. 22-14, 14 +14, 12
2. 8, 28-12, 12+12
3. 8, 16, 24-8
4. 8+8, 16, 16
5. 16, 16, 16

7.- El camino del escarabajo.
Junto a la carretera hay un adoquín de granito de 30 cm de longitud, 20 cm de altura y 20 cm de...
tracking img