Adasfdf

Solo disponible en BuenasTareas
  • Páginas : 15 (3707 palabras )
  • Descarga(s) : 0
  • Publicado : 17 de noviembre de 2011
Leer documento completo
Vista previa del texto
DISTRIBUCIONES DE PROBABILIDAD EN HIDROLOGIA

El comportamiento de las variables aleatorias discretas o continuas se describe con la ayuda de Distribuciones de Probabilidad. La variable se designa por mayúscula y un valor especifico de ella por minúscula.

Por P(x = a) se denota la probabilidad de que un evento asuma el valor a; similarmente P(a x b) denota la probabilidad de que unevento se encuentre en el intervalo (a,b). Si conocemos la probabilidad P(a x b) para todos los valores de a y b, se dice que conocemos la Distribución de Probabilidades de la variable x.

Si x es un número dado y consideramos la probabilidad P(X x):
F(x)= P(X x):
y llamamos F(x) la función de distribución acumulada

Ejemplo

Se tienen las probabilidades de que haya 1, 2, 3, ... etc,días nublados por semana en un determinado lugar, con ellos calcule la distribución de probabilidades

x | P(x) | F(x) |
0 | 0.05 | 0.05 |
1 | 0.15 | 0.20 |
2 | 0.25 | 0.45 |
3 | 0.20 | 0.65 |
4 | 0.15 | 0.80 |
5 | 0.10 | 0.90 |
6 | 0.08 | 0.98 |
7 | 0.02 | 1.00 |
Total | 1.0 | |

Si se tiene una variable aleatoria continua, la figura presenta el histograma de 85 años deregistro de caudales de crecientes (máximos instantáneos) en el río Magdalena, agrupados en 9 intervalos de clase.

x | P(x) | F(x) |
1 | 0.05 | 0.05 |
2 | 0.10 | 0.15 |
3 | 0.15 | 0.30 |
4 | 0.20 | 0.50 |
5 | 0.10 | 0.60 |
6 | 0.10 | 0.70 |
7 | 0.15 | 0.85 |
8 | 0.10 | 0.95 |
9 | 0.05 | 1.00 |
Total | 1.00 | |

Cuando el número de observaciones se incrementa, el tamaño delos intervalos decrece y se puede tener algo sí

donde f(x) es la llamada función de densidad de probabilidades y tiene las siguientes características

i)
ii)
iii)

Lo que implica que las probabilidades se definen solo como AREAS bajo la función de densidad de probabilidad (FDP) entre límites finitos.

MOMENTOS DE LAS DISTRIBUCIONES

Las propiedades de las distribuciones pueden serdefinidas completamente en términos de los momentos. Los momentos en estadística son similares a los momentos en física (rotación respecto al origen)

para la variable continua

para la variable discreta

o respecto a la media (eje de rotación diferente al origen)

para la variable continua

para la variable discreta

PARÁMETROS ESTADISTICOS

Los estadísticos extraen informaciónde una muestra, indicando las características de la población. Los principales estadísticos son los momentos de primer, segundo y tercer orden correspondiente a la media, varianza, y asimetría respectivamente.

Media :
es el valor esperado de la variable misma . Primer momento respecto a la origen. Muestra la tendencia central de la distribución

el valor estimado de la media a partirde la muestra es

Varianza ²:
mide la variabilidad de los datos. Es el segundo momento respecto a la media.

el valor estimado de la varianza a partir de la muestra es

en el cual el divisor es n-1 en lugar de n para asegurar que la estadística de la muestra no sea sesgada, es decir, que no tenga una tendencia, en promedio, a ser mayor o menor que el valor verdadero. Las unidades de lavarianza son la media al cuadrado, la desviación estándar es una medida de la variabilidad que tiene las mismas dimensiones que la media y simplemente es la raíz cuadrada de la varianza, se estima por s. El significado de la desviación estándar se ilustra en la siguiente figura

Efectos de la función de densidad de probabilidad causados por cambios en la desviación estándar.

Coeficientede variación es una medida adimensional de la variabilidad su estimado es

Coeficiente de asimetría
la distribución de los valores de una distribución alrededor de la media se mide por la asimetría. Se obtiene a partir del tercer momento alrededor de la media, dividiéndolo por el cubo de la desviación estándar para que sea adimensional.

tercer momento respecto a la media

Un...
tracking img