Algebra booleana

Solo disponible en BuenasTareas
  • Páginas : 17 (4121 palabras )
  • Descarga(s) : 0
  • Publicado : 29 de noviembre de 2010
Leer documento completo
Vista previa del texto
INTRODUCCION:
Álgebra de Boole (también llamada Retículas booleanas) en informática y matemática, es una estructura algebraica que conforman las operaciones lógicas Y, O y NO, así como el conjunto de operaciones unión, intersección y complemento.
Se denomina así en honor a George Boole, (2 de noviembre de 1815 a 8 de diciembre de
1864), matemático inglés que fue el primero en definirlacomo parte de un sistema lógico a mediados del siglo XIX. El álgebra de Boole fue un intento de utilizar las técnicas algebraicas para tratar expresiones de la lógica proposicional. En la actualidad, el álgebra de Boole se aplica de forma generalizada en el ámbito del diseño electrónico.
Claude Shannon fue el primero en aplicarla en el diseño de circuitos de conmutación eléctrica biestables,en 1948.
En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware, y que está formado por los componentes electrónicos de la máquina, se trabaja con diferencias de tensión, las cuales generan funciones que son calculadas por los circuitos que forman el nivel. Estas funciones, en la etapa de diseño del hardware, son interpretadas como funciones de Boole.Asimismo, se plantean dos formas canónicas de las funciones booleanas, que son útiles para varios propósitos, tales como el de determinar si dos expresiones representan o no la misma función. Pero para otros propósitos son a menudo difíciles, por tener más operaciones que las necesarias. Particularmente, cuando estamos construyendo los circuitos electrónicos con que implementar funciones booleanas, elproblema de determinar una expresión mínima para una función es a menudo crucial. No resultan de la misma eficiencia en dinero y tiempo, principalmente, dos funciones las cuales calculan lo mismo pero donde una tiene menos variables y lo hace en menor tiempo.
Como solución a este problema, se plantea un método de simplificación, que hace uso de unos diagramas especiales llamados mapas odiagramas de Karnaugh, y el cual tiene la limitación de poder trabajar adecuadamente sólo con pocas variables.
Se realizan estas presentaciones con el fin de demostrar la afinidad existente entre el álgebra de Boole y la lógica proposicional, y con el objeto de cimentar el procedimiento de simplificación presentado en la lógica de proposiciones.

Álgebra de Booleana.
El álgebra de Boole estoda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones binarias denominadas suma (+) y producto (.) (La operación producto se indica generalmente mediante la ausencia de símbolo entre dos variables lógicos).
4.1 Teoremas y Postulados.
TEOREMAS
La manera de demostrar los teoremassiguientes se puede basar en ideas intuitivas producto de la familiaridad con algún álgebra booleana en particular, (en diagramas de
Venn, o bien, en circuitos con switches o en tablas de verdad) con la única condición de que se respete al pie de la letra los 6 postulados fundamentales. En estas notas sólo se usan razonamientos basados en los seis postulados. el hecho de que cada postuladotiene dos incisos los cuales sond u a l e s uno del otro.
OP r i n c i p i o de Dualidad. Si una expresión booleana es verdadera, su expresión dual también lo es.
O Expresiones duales. Dos expresiones se dicen duales una de la otra, si una se puede obtener de la otra cambiando las operaciones ( + ) por (.) y viceversa y cambiando los
O's por 1 's y viceversa.
Teorema 1. Multiplicación porcero
a) A.0 = 0
b) A+1 = 1
Explicación:
A.0 = A.0 + 0 0 es el neutro de la suma
= A.0 + A.A el producto de una variable por su complemento da 0
= A.(0 +A)d i s t r i b u t i v i d a d
= A.(A) una variable más el neutro no se altera
=0una variable por su complemento da 0
Teorema 2. Absorción
a) A + AB = A
b) A(A + B) = A
F De aquí en adelante, de acuerdo al principio de...
tracking img