Algebra simple inecuacion

Solo disponible en BuenasTareas
  • Páginas : 2 (387 palabras )
  • Descarga(s) : 0
  • Publicado : 27 de mayo de 2011
Leer documento completo
Vista previa del texto
Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:
< menor que 2x − 1 < 7
≤ menor o igual que 2x − 1 ≤ 7
> mayor que 2x − 1 > 7
≥mayor o igual que 2x − 1 ≥ 7
La solución de una inecuación es el conjunto de valores de la variable que verifica la inecuacíón.
Podemos expresar la solución de la inecuación mediante:
1. Unarepresentación gráfica.
2. Un intervalo.
2x − 1 < 7
2x < 8 x < 4

(-∞, 4)
2x − 1 ≤ 7
2x ≤ 8 x ≤ 4

(-∞, 4]
2x − 1 > 7
2x > 8 x > 4

(4, ∞)
2x − 1 ≥ 7
2x ≥ 8 x ≥4

[4, ∞)

Criterios de equivalencia de inecuaciones

Si a los dos miembros de una inecuación se les suma o se les resta un mismo número, la inecuación resultante es equivalente a la dada.3x + 4 < 5 3x + 4 − 4 < 5 − 4 3x < 1
Si a los dos miembros de una inecuación se les multiplica o divide por un mismo número positivo, la inecuación resultante es equivalente a la dada.2x < 6 2x : 2 < 6 : 2 x < 3
Si a los dos miembros de una inecuación se les multiplica o divide por un mismo número negativo, la inecuación resultante cambia de sentido y esequivalente a la dada.
−x < 5 (−x) • (−1) > 5 • (−1) x > −5

Consideremos la inecuación:

La resolveremos aplicando los siguientes pasos:
1º Quitar corchetes.

2º Quitarparéntesis.

3º Quitar denominadores.


4º Agrupar los términos en x a un lado de la desigualdad y los términos independientes en el otro.

5º Efectuar las operaciones

6º Como el coeficiente dela x es negativo multiplicamos por −1, por lo que cambiará el sentido de la desigualdad.

7º Despejamos la incógnita.

Obtenemos la solución como una desigualdad, pero ésta también podemosexpresarla:
De forma gráfica:

Como un intervalo:
[3, +∞)

Su solución es uno de los semiplanos que resulta de representar la ecuación resultante, que se obtiene al transformar la desigualdad...
tracking img