ALGEBRALINEAL

Solo disponible en BuenasTareas
  • Páginas : 149 (37159 palabras )
  • Descarga(s) : 0
  • Publicado : 16 de agosto de 2015
Leer documento completo
Vista previa del texto
´
ESCUELA TECNICA
SUPERIOR DE INGENIER´IA
´
INFORMATICA
´
INGENIER´IA TECNICA
EN
´
´
INFORMATICA
DE GESTION

Apuntes de

´
ALGEBRA
LINEAL

por
Fco. Javier Cobos Gavala
Amparo Osuna Lucena
Rafael Robles Arias
Beatriz Silva Gallardo

Contenido

1 Matrices y determinantes

1

1.1

Notaci´on y definiciones . . . . . . . . . . . . . . . . . . . . . .

1

1.2

Aritm´etica de matrices . . . . . . . .. . . . . . . . . . . . . .

3

1.2.1

Suma de matrices . . . . . . . . . . . . . . . . . . . . .

3

1.2.2

Producto por un escalar . . . . . . . . . . . . . . . . .

4

1.2.3

Producto de matrices . . . . . . . . . . . . . . . . . . .

4

1.2.4

Trasposici´on . . . . . . . . . . . . . . . . . . . . . . . .

5

1.2.5

Otras definiciones. . . . . . . . . . . . . . . . . . . . .

5Transformaciones elementales. . . . . . . . . . . . . . . . . . .

6

1.3.1

Transformaciones elementales fila. . . . . . . . . . . . .

6

1.3.2

Transformaciones elementales columna. . . . . . . . . .

8

1.4

Algoritmo de Gauss-Jordan. . . . . . . . . . . . . . . . . . . .

10

1.5

Determinante de una matriz cuadrada. . . . . . . . . . . . . .

14

1.5.1

Definiciones. . . . . . . . . . . . . . . . . . . . .. . . .

14

1.5.2

Propiedades . . . . . . . . . . . . . . . . . . . . . . . .

15

1.6

Factorizaci´on triangular. . . . . . . . . . . . . . . . . . . . . .

17

1.7

Inversa de una matriz cuadrada . . . . . . . . . . . . . . . . .

18

1.7.1

C´alculo de la matriz inversa. . . . . . . . . . . . . . . .

20

Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . .

21

1.3

1.8

2Sistemas de ecuaciones lineales. Espacios vectoriales.
2.1

Notaci´on y definiciones . . . . . . . . . . . . . . . . . . . . . .
i

25
26

ii

Contenido
2.2

M´etodo de eliminaci´on gaussiana . . . . . . . . . . . . . . . .

28

2.2.1

Sistemas de ecuaciones lineales homog´eneos . . . . . .

32

2.3

Espacios Vectoriales . . . . . . . . . . . . . . . . . . . . . . . .

34

2.4

Dependencia lineal .. . . . . . . . . . . . . . . . . . . . . . .

37

2.4.1

Espacios vectoriales de tipo finito . . . . . . . . . . . .

40

2.4.2

Bases de un espacio vectorial

. . . . . . . . . . . . . .

41

2.4.3

Rango de un conjunto de vectores . . . . . . . . . . . .

45

2.4.4

Rango de una matriz . . . . . . . . . . . . . . . . . . .

47

Variedades lineales . . . . . . . . . . . . . . . . . . . . . . ..

49

2.5.1

Caracterizaci´on de los subespacios vectoriales . . . . .

49

2.5.2

Variedad engendrada por un conjunto finito de vectores

50

Operaciones con variedades lineales . . . . . . . . . . . . . . .

51

2.6.1

Intersecci´on . . . . . . . . . . . . . . . . . . . . . . . .

51

2.6.2

Uni´on . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

2.6.3

Suma . . . . . . . . . . . . .. . . . . . . . . . . . . . .

52

2.6.4

Suma directa . . . . . . . . . . . . . . . . . . . . . . .

53

Ecuaciones de los subespacios. . . . . . . . . . . . . . . . . . .

54

2.7.1

Ecuaciones del subespacio suma . . . . . . . . . . . . .

56

2.7.2

Ecuaciones del subespacio intersecci´on . . . . . . . . .

57

2.8

Propiedades de los espacios vectoriales de tipo finito. . . . . .

60

2.9Cambio de bases . . . . . . . . . . . . . . . . . . . . . . . . .

62

2.10 Espacios fundamentales asociados a una matriz. . . . . . . . .

64

2.10.1 Espacio fila de A: [R(At )]. . . . . . . . . . . . . . . . .

65

2.10.2 Espacio nulo de A: [N (A)]. . . . . . . . . . . . . . . .

65

2.10.3 Espacio columna de A. [R(A)]. . . . . . . . . . . . . .

66

2.11 Teorema de Rouche-Fr¨obenius . . . . . . .. . . . . . . . . . .

67

2.12 Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . .

70

2.5

2.6

2.7

3 Aplicaciones lineales.
3.1


ucleo e Imagen de una aplicaci´on lineal. . . . . . . . . . . . .

79
82

Contenido

iii

3.2

Ecuaciones de una aplicaci´on lineal. . . . . . . . . . . . . . . .

84

3.2.1

Matriz asociada a una aplicaci´on lineal. . . . . . . . . .

85...
tracking img