Analisis de regresion

Solo disponible en BuenasTareas
  • Páginas : 7 (1570 palabras )
  • Descarga(s) : 0
  • Publicado : 11 de febrero de 2011
Leer documento completo
Vista previa del texto
Análisis de Regresión y Correlación
Introducción
Muchas veces las decisiones se basan en la relación entre dos o más variables.
Ejemplos
Radios de comunicación en función de la transmisión de datos.
Relación funcional entre dos variables
Una relación funcional se expresa mediante   una función matemática.
Si X es la variable independiente e Y es la variable dependiente, una relaciónfuncional tiene la forma:
Y=f(X)
Ejemplo 1
radio | | Rendimiento(kg/h) |
123 | 7525130 | 15050260 |
Figura 1
Relación funcional perfecta entre dosis y rendimientos

Nota: Las observaciones caen exactamente sobre la línea de relación funcional
Relación estadística entre dos variables
A diferencia de la relación funcional, no es una relación perfecta, las observaciones no caen exactamentesobre la curva de relación entre las variables
Ejemplo 2
Lote de productos | Tamaño del lote | Horas hombre |
12345 | 3020608040 | 735012817087 |
Figura 2
Relación estadística entre tamaño del lote y horas hombre

Nota: La mayor parte de los punto no caen directamente sobre la línea de relación estadística.
Esta dispersión de punto alrededor de la línea representa la variación aleatoriaFigura 3
Coordenadas de puntos de control utilizados para corregir la columna de los niveles digitales de una imagen satelital

Nota: se trata de un terreno rugoso donde varían notablemente las condiciones de observación del sensor, para corregir errores geométricos de la imagen, se aplican  funciones de segundo grado. Los datos sugieren que la relación estadística es de tipo curvilínea.Conceptos básicos
Análisis de Regresión: Es un procedimiento estadístico que estudia la relación funcional entre variables.Con el objeto de predecir una en función de la/s otra/s.
Análisis de Correlación: Un grupo de técnicas estadísticas usadas para medir la intensidad de la relación entre dos variables
Diagrama de Dispersión: Es un gráfico que muestra la intensidad y el sentido de la relación entredos variables de interés.
Variable dependiente (respuesta, predicha, endógena): es la variable que se desea predecir o estimar
Variables independientes (predictoras, explicativas exógenas). Son las variables que proveen las bases para estimar.
Regresión simple: interviene una sola variable independiente
Regresión múltiple: intervienen dos o más variables independientes.
Regresión lineal: lafunción es una combinación lineal de los parámetros.
Regresión no lineal: la función que relaciona los parámetros no es una combinación lineal
Gráfico de dispersión
Los diagramas de dispersión no sólo muestran la relación existente entre variables, sino también resaltan las observaciones individuales que se desvían de la relación general. Estas observaciones son conocidas como outliers ovalores inusitados, que son puntos de los datos que aparecen separados del resto.
 Gráfico de dispersión entre Bandas

Coeficiente de correlación lineal
El Coeficiente de Correlación (r) requiere variables medidas en escala de intervalos o de proporciones
- Varía entre -1 y 1.
- Valores  de -1 ó 1 indican correlación perfecta.
- Valor igual a 0 indica ausencia de correlación.
- Valores negativosindican una relación lineal inversa y valores positivos indican una relación lineal directa
Correlación Negativa Perfecta

Correlación Positiva Perfecta

Ausencia de Correlación

Correlación Fuerte y Positiva

Fórmula para el coeficente de  correlación (r)  Pearson

Modelos de Regresión
Un modelo de regresión, es una manera de expresar dos ingredientes esenciales de una relaciónestadística:
- Una tendencia de la variable dependiente Y a variar conjuntamente con la variación de la o las X de una manera sistemática
- Una dispersión de las observaciones alrededor de la curva de relación estadística
Estas dos características están implícitas en un modelo de regresión, postulando que:
- En la población de observaciones asociadas con el proceso que fue muestreado, hay una...
tracking img