Analisis de varianza

Solo disponible en BuenasTareas
  • Páginas : 6 (1355 palabras )
  • Descarga(s) : 0
  • Publicado : 6 de enero de 2012
Leer documento completo
Vista previa del texto
Análisis de la varianza
El análisis de la varianza es un método para comparar dos o más medias, que es necesario porque cuando se quiere comparar más de dos medias es incorrecto utilizar repetidamente el contraste basado en dos motivos:
En primer lugar, y como se realizarían simultánea e independientemente varios contrastes de hipótesis, la probabilidad de encontrar alguno significativo porazar aumentaría. En cada contraste se rechaza y supera el nivel crítico, para lo que, en la hipótesis nula, hay una probabilidad .
Por otro lado, en cada comparación la hipótesis nula es que las dos muestras provienen de la misma población, por lo tanto, cuando se hayan realizado todas las comparaciones, la hipótesis nula es que todas las muestras provienen de la misma población y, sin embargo,para cada comparación, la estimación de la varianza necesaria para el contraste es distinta, pues se ha hecho en base a muestras distintas.
El método que resuelve ambos problemas es el anova, aunque es algo más que esto: es un método que permite comparar varias medias en diversas situaciones; muy ligado, por tanto, al diseño de experimentos y, de alguna manera, es la base del análisismultivariante.
Bases del análisis de la varianza
Supónganse k muestras aleatorias independientes, de tamaño n, extraídas de una única población normal. A partir de ellas existen dos maneras independientes de estimar la varianza de la población σ2
1) Una llamada varianza dentro de los grupos (ya que sólo contribuye a ella la varianza dentro de las muestras), o varianza de error, o cuadrados medios delerror, y habitualmente representada por MSE (Mean Square Error) o MSW (Mean Square Within) que se calcula como la media de las k varianzas muestrales (cada varianza muestral es un estimador centrado de σ2 y la media de k estimadores centrados es también un estimador centrado y más eficiente que todos ellos). MSE es un cociente: al numerador se le llama suma de cuadrados del error y serepresenta por SSE y al denominador grados de libertad por ser los términos independientes de la suma de cuadrados.
2) Otra llamada varianza entre grupos (sólo contribuye a ella la varianza entre las distintas muestras), o varianza de los tratamientos, o cuadrados medios de los tratamientos y representada por MSA o MSB (Mean Square Between). Se calcula a partir de la varianza de las medias muestrales yes también un cociente; al numerador se le llama suma de cuadrados de los tratamientos (se le representa por SSA) y al denominador (k-1) grados de libertad.
MSA y MSE, estiman la varianza poblacional en la hipótesis de que las k muestras provengan de la misma población. La distribución muestral del cociente de dos estimaciones independientes de la varianza de una población normal es una F conlos grados de libertad correspondientes al numerador y denominador respectivamente, por lo tanto se puede contrastar dicha hipótesis usando esa distribución.
Si en base a este contraste se rechaza la hipótesis de que MSE y MSA estimen la misma varianza, se puede rechazar la hipótesis de que las k medias provengan de una misma población.
Aceptando que las muestras provengan de poblaciones con lamisma varianza, este rechazo implica que las medias poblacionales son distintas, de modo que con un único contraste se contrasta la igualdad de k medias.
Existe una tercera manera de estimar la varianza de la población, aunque no es independiente de las anteriores. Si se consideran las kn observaciones como una única muestra, su varianza muestral también es un estimador centrado.
Se suelerepresentar por MST, se le denomina varianza total o cuadrados medios totales, es también un cociente y al numerador se le llama suma de cuadrados total y se representa por SST, y el denominador (kn -1) grados de libertad.
Los resultados de un anova se suelen representar en una tabla como la siguiente:
|Fuente de variación |G.L. |SS |MS |F...
tracking img