Analitica

Solo disponible en BuenasTareas
  • Páginas : 11 (2701 palabras )
  • Descarga(s) : 0
  • Publicado : 24 de mayo de 2011
Leer documento completo
Vista previa del texto
GEOMETRÍA ANALÍTICA

La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Su desarrollo histórico comienza con la geometría cartesiana, impulsada con la aparición de la geometría diferencial de Carl Friedrich Gaussy más tarde con el desarrollo de la geometría algebraica.
Las doscuestiones fundamentales de la geometría analítica son:
Dado el lugar geométrico en un sistema de coordenadas, obtener su ecuación.
Dada la ecuación en un sistema de coordenadas, determinar la gráfica o lugar geométrico de los puntos que verifican dicha ecuación.
Lo novedoso de la geometría analítica es que representa las figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f es una funciónu otro tipo de expresión matemática: las rectas se expresan como ecuaciones polinómicas de grado 1 (por ejemplo, 2x + 6y = 0), las circunferencias y el resto de cónicascomo ecuaciones polinómicas de grado 2 (la circunferencia x2 + y2 = 4, la hipérbola xy = 1), etc.
Construcciones fundamentales
En un sistema de coordenadas cartesianas, un punto del plano queda determinado por dos números,llamados abscisa y ordenada del punto. Mediante ese procedimiento a todo punto del plano corresponden siempre dos números reales ordenados (abscisa y ordenada), y recíprocamente, a un par ordenado de números corresponde un único punto del plano. Consecuentemente el sistema cartesiano establece una correspondencia biunívoca entre un conceptogeométrico como es el de los puntos del plano y un conceptoalgebraico como son los pares ordenados de números. Esta correspondencia constituye el fundamento de la geometría analítica.
Con la geometría analítica se puede determinar figuras geométricas planas por medio de ecuaciones e inecuaciones con dos incógnitas. Éste es un método alternativo de resolución de problemas, o cuando menos nos proporciona un nuevo punto de vista con el cual poder atacar elproblema.
Localización De Un Punto En El Plano Cartesiano
En un plano traza dos rectas orientadas perpendiculares entre sí (ejes) —que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical—, y cada punto del plano queda unívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se dé también un criterio para determinar sobrequé semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado (x,y), siendo x la distancia a uno de los ejes (por convenio será la distancia al eje vertical) e y la distancia al otro eje (al horizontal).
En la coordenada x, el signo positivo (que suele omitirse)significa que la distancia se toma hacia la derecha del eje horizontal (eje de las abscisas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada y, el signo positivo (también se suele omitir) indica que la distancia se toma hacia arriba del eje vertical (eje de ordenadas), tomándose hacia abajo si el signo es negativo (tampoco se omite nunca eneste caso).
A la coordenada x se la suele denominar abscisa del punto, mientras que a la y se la denomina ordenada del punto.
Los puntos del eje de abscisas tienen por lo tanto ordenada igual a 0, así que serán de la forma (x,0), mientras que los del eje de ordenadas tendrán abscisa igual a 0, por lo que serán de la forma (0,y).
El punto donde ambos ejes se cruzan tendrá por lo tanto distancia0 a cada uno de los ejes, luego su abscisa será 0 y su ordenada también será 0. A este punto —el (0,0)— se le denomina origen de coordenadas.
Ecuaciones de la recta en el plano
Una recta es el lugar geométrico de todos los puntos en el plano tales que, tomados dos cualesquiera de ellos, el cálculo de la pendiente resulta siempre igual a una constante.
La ecuación general de la recta es de...
tracking img