Aplicaciones de ecuaciones diferenciales

Solo disponible en BuenasTareas
  • Páginas : 6 (1477 palabras )
  • Descarga(s) : 0
  • Publicado : 6 de marzo de 2011
Leer documento completo
Vista previa del texto
ECUACIONES DIFERENCIALES ORDINARIAS
Es una relación que contiene funciones de una sola variable independiente, y una o más de sus derivadas con respecto a esa variable, las cuales involucran derivadas parciales de varias variables.
Las ecuaciones diferenciales ordinarias son importantes en diversas áreas de estudio como la geometría, mecánica y astronomía, además de muchas otras aplicaciones,pero nos centraremos en las aplicaciones en la ingeniería industrial.

Aplicaciones en la ingeniería industrial:
En la ingeniería industrial se vive y se trata a diario la economia y allí es donde se pueden utilizar las ecuaciones diferenciales, veremos algunos ejemplos y como se pueden aplicar.
En años recientes se ha visto un interés creciente por la aplicación de las matemáticas a laeconomía. Sin embargo, puesto que la economía involucra mucho factores impredecibles, tales como decisiones psicológicas o políticas, la formulación matemática de sus problemas es difícil. Se debería hacer énfasis que, como en los problemas de ciencia e ingeniería, cualquier resultado obtenido teóricamente debe finalmente ser probado a la luz de la realidad.
Aplicación en la Oferta y Demanda
Supongaque tenemos un bien tal como trigo o petróleo. Sea p el precio de este producto por alguna unidad especificada, por ejemplo un barril de petróleo en cualquier tiempo t. Entonces podemos pensar que p es una función de t así que p(t) es el precio en el tiempo t.
El numero de unidades del bien que desean los consumidores por unidad de tiempo en cualquier tiempo t se llama la demanda y se denota porD(t), o brevemente D. Esta demanda puede depender no solo del precio p en cualquier tiempo t, esto es, p(t), sino también de la dirección en la cual los consumidores creen que tomaran los precios, esto es, la tasa de cambio del precio o derivada p´(t). Por ejemplo, si los precios están altos en tiempo t pero los consumidores creen que pueden subir, la demanda tiende a incrementar. En símbolos estadependencia de D en p(t) y p´(t) puede escribirse:
D = (p(t)),p´(t)
Llamamos la función de demanda.
Similarmente, el numero de unidades del bien que los productores tienen disponible por unidad de tiempo en cualquier tiempo t se llama oferta y se denota por S(t), o brevemente S. Como en el caso de la demanda, S también depende de p(t) y p´(t). Por ejemplo, si los precios están altos en tiempo tpero los productores creen que estos pueden subir mas, la oferta disponible tiende a incrementar anticipándose a precios más altos. En símbolo esta dependencia de S en p(t) y p´(t) puede escribirse:
S = g(p(t), p´(t)
Llamamos g a la función oferta.
Principio económico de la oferta y la demanda:
El precio de un bien en cualquier tiempo t, esto es, p(t), esta determinada por la condición de quela demanda en t sea igual a la oferta en t, en forma matemática esto quiere decir:
(p(t),p´(t)) = g(p(t),p´(t))
Las formas que debería tener y g son las siguientes:
D = (p(t),p´(t)) = A1p(t) + A2p´(t) + A3
S = g(p(t),p´(t)) = B1p(t) + B2p´(t) + B3
donde A´S y B´S son constantes, en ese caso la formula matemática se transforma a la siguiente expresión:
A1p(t) + A2p´(t) + A3 = B1p(t)+B2p´(t) + B3
(A2 - B2)p´(t) + (A1 - B1)p(t) = B3 - A3
Asumamos que A1"B1, A2"B2 y A3"B3. Entonces podríamos escribir la formula como:
p´(t) + (A1-B1/A2-B2)p(t) = B3-A3/A2-B2
Resolviendo esta ecuación lineal de primer orden sujeta a p = Po en t = 0 da como resultado:
p(t) = B3-A3/A1-B1 + [Po- (B3-A3/A1-B1)]e
Caso I: Si Po = (B3-A3)/(A1-B1) y p(t)=Po entonces, los precios permanecen constantes entodo tiempo.
Caso II: Si (A1-B1)/A2-B2)>0 entonces se tendría una estabilidad de precios.
Caso III: Si (A1-B1)/A2-B2) (B3-A3)/A1-B1),esto significa que tenemos inflación continuada o inestabilidad de precio. Este proceso puede continuar hasta que los factores económicos cambien, lo cual puede resultar en un cambio a la ecuación (A2 - B2)p´(t) + (A1 - B1)p(t) = B3 -A3.
Ejemplo:
La demanda y...
tracking img