Auto instruccion de matematica

Solo disponible en BuenasTareas
  • Páginas : 11 (2544 palabras )
  • Descarga(s) : 4
  • Publicado : 15 de mayo de 2010
Leer documento completo
Vista previa del texto
INDICACIONES GENERALES

Los modelos de auto instrucción están sobre todo dirigidos para la enseñanza individualizada ya que liberan al docente y al alumno de las limitaciones de la enseñanza tradicional, dándoles la oportunidad de lograr libremente una instrucción adecuada, por otro lado las unidades de auto instrucción te permitirá tomar todo el tiempo que considere necesario para lograrlos objetivos.

El módulo contiene cinco tareas, las cuales deberás leer y analizar detenidamente para luego desarrollar las actividades propuestas, por lo que deberás seguir algunas instrucciones:

Lee detenidamente los objetivos de cada tarea.
Lee el contenido la cantidad de veces que creas que lo necesites.
Resuelve cada una de las prácticas que se indican al final de las tareas,sin ver la respuesta. Se honesto contigo mismo.
Verifica tus respuestas y vuelve a resolver las que obtuviste incorrecta.
Trabaja en forma ordenada y responsable.

AUTO INSTRUCCIÓN

TEMA:FUNCIONES

OBJETIVO GENERAL: Conocer las características principales de una Función.

No. de tarea Tema
Objetivo Específico
1 Función Distinguir los elementos principales de una función
2 Raícesde una Función Encontrar las raíces de una función
3 Combinaciones de Funciones Operar las funciones compuestas
4 Funciones Inversas Calcular la función inversa
5 Valores máximos y mínimos de las funciones Reconocer el punto máximo y el mínimo de una función

TAREA #1
Función

OBJETIVO ESPECÍFICO: Distinguir los elementos principales de una función.

Objetivo Operacional
1.Definir el concepto de Función.
2. Reconocer los elementos de una
Función.

INFORMACIÓN

Al final del siglo 17 Gottfried Wilhelm Leibniz, uno de los inventores del cálculo, introdujo el término función en el vocabulario matemático. En adición a ser parte esencial para el estudio del cálculo, el concepto de función tuvo un rol importante en la ciencia y en la tecnologíadescribiendo las relaciones entre cantidades físicas.

Uno de los conceptos más útiles en matemáticas es el de función. Se puede considerar que la función es una regla de correspondencia que asocia a cada elemento de un conjunto X uno y sólo un elemento de un conjunto Y.
Para ser más explícitos se puede definir como lo siguiente:

Una función f de un conjunto X a un conjunto Y es una regla queasocia a cada elemento de x de X un único elemento y de Y. El elemento y se llama la imagen de x bajo f y se denota f(x).
X Y
f

El conjunto X se llama dominio de la función. El codominio de la función consta de todas las imágenes de los elementos de X.

A manera de ejemplo podríamos manifestar que el dominio consistiría en el conjunto de personas en la clase de Cálculo y elcodominio al conjunto de A,B,C,D,F que se le será asignado a cada estudiante, y la regla de correspondencia es el procedimiento en el cual su el profesor usa las calificaciones asignadas.

La regla de correspondencia es el corazón de una función, pero una función no es completamente determinada hasta que su dominio es dado. Por ejemplo, si F es una función con la regla F(x) = x2 + 1 y sudominio es dado por –1, 0, 1, 2, 3, luego su codominio sería 1, 2, 5, 10. El dominio y el rango determinan el codominio.

X Y
f



Práctica

Dados los siguientes digramas de Venn. Determine el Dominio y el Codominio de la Función. Indicados con flechas.

Respuestas

1. Dominio: 2, 5, 8, 10
Codominio: 4, 10, 16, 20

2. Dominio: Colón,Penonomé, Las Tablas
Codominio: Colón, Coclé, Los Santos

3. Dominio: -1, -9,-58, -69
Codominio 1, 9, 58, 69

TAREA #2

TAREA #2

Raíces de una función

OBJETIVO ESPECÍFICO: Encontrar las raíces de una función.

Objetivo Operacional
- Identificar la variable dependiente e
Independiente de una función.
- Calcular las raíces de una función.


INFORMACIÓN

Para tener un...
tracking img