Banaficios del resumen

Solo disponible en BuenasTareas
  • Páginas : 2 (402 palabras )
  • Descarga(s) : 0
  • Publicado : 7 de febrero de 2012
Leer documento completo
Vista previa del texto
Los beneficios de un resumen
Para fijar conocimientos es deseable hacer un alto en el camino y resumir las ideas principales que se trabajaron en el tema en cuestión. En este caso, podemos destacarlos puntos que a continuación se señalan. Te recomendamos imprimir estos puntos, para ello, selecciónalos, después oprime Control + P y elige la opción de Selección y después aceptar:
La formacanónica de las ecuaciones de segundo grado es ax2+bx+c=0 que permite encontrar las intersecciones de la gráfica de la función cuadrática y=ax2+bx+c con el eje x.
Hay dos algoritmos esencialmentediferentes para resolver ecuaciones de segundo grado: factorización y fórmula general.
En la factorización vimos básicamente dos casos:
■Cuando a=1, la ecuación se factoriza como: x2+bx+c=(x+p)(x+q)=0 dondec=pq y b=p+q. Las soluciones son x1= - p, x2= - q.
■Cuando a ≠ 1, multiplicamos toda la ecuación por a y recurrimos a un cambio de variable para transformar la ecuación en el caso anterior.
Elmétodo de factorización sólo podemos aplicarlo cuando las soluciones son números enteros o racionales.
Con la fórmula general se puede resolver cualquier ecuación de segundo grado, sin importar inclusoque sus coeficientes no sean números enteros. Para aplicarla hay que distinguir el valor de los parámetros a, b y c, y sustituirlos en la fórmula
Una ecuación cuadrática ax2+bx+c=0 puede tener dossoluciones reales, una o ninguna. El discriminante b2 - 4ac es el que nos informa al respecto.
■Sí b2 - 4ac >0, la ecuación tiene dos soluciones reales que corresponden a las abscisas de los dospuntos donde la gráfica de la función y=ax2+bx+c corta al eje x. Por ello, la parábola corta al eje x en dos puntos.
■Si b2 - 4ac =0, la ecuación tiene una única solución. Corresponde a la abscisa delvértice de la parábola de y=ax2+bx+c, que es el único punto que toca al eje x.
■Si b2 - 4ac<0, la ecuación NO tiene soluciones reales sino complejas. Por ello la gráfica de la función...
tracking img