Buena tarea

Solo disponible en BuenasTareas
• Páginas : 4 (864 palabras )
• Descarga(s) : 0
• Publicado : 24 de agosto de 2012

Vista previa del texto
Brandenburg Technical University Cottbus
Department 1, Institute of Mathematics Chair for Numerical Mathematics an Scientiﬁc Computing Prof. Dr. G. Bader, Dr. A. Pawell

Problem Session to theCourse: Mathematics I
Environmental and Resource Management WS 2002/03 Solutions to Sheet No. 13 (Deadline: January, 27/28 2002)

Homework
H 13.1: Eigenvalues of A: λ1 = −1, λ2/3 = 1 Eigenvectors: λ1= −1:   2 0 0  0 1 1  x = 0, 0 1 1 λ2/3 = 1: 1 c2 = √ (0, 1, 1)T , 2  C= 0
1 √ 2 1 − √2

x = (0, 1, −1)T ,

1 c1 = √ (0, 1, −1)T 2

c3 = (1, 0, 0)T

1 √ 2 1 √ 2

 0 1 0 . 0

q(x)= xT Ax = x2 + 2x2 x3 . 1 B = C, C T AC = diag(1, −1, −1)

2 2 2 q(Cy) = (Cy)T A(Cy) = y T C T ACy = y T diag(1, −1, −1)y = y1 − y2 − y3 .

H 13.2:

1−λ det(A − λE) = det  0 0

1 1−λ −1 1 = 5 −1 − λ

(1 − λ)[(1 − λ)(−1 − λ) + 5] = (1 − λ)[4 + λ2 ] = 0

λ1 = 1,

λ2/3 = ±2i

Eigenvectors:  1−λ  0 0 λ1 = 1:  1 1−λ −1  1 x = 0 5 −1 − λ

 0 1 1  0 0 5 , 0 −1−2

x = t(1, 0, 0)T

λ1 = 2i: 

 1 − 2i 1 1  x = 0 0 1 − 2i 5 0 −1 −1 − 2i 2i , −1 − 2i, 1 1 − 2i
T

 1 − 2i 1 1  0 −1 −1 − 2i  x = 0, x = 0 0 0 λ1 = −2i:   1 + 2i 1 1  x = 00 1 + 2i 5 0 −1 −1 + 2i   1 + 2i 1 1  0 −1 −1 + 2i  x = 0, x = 0 0 0 H 13.3: det(A − λE) = det 1−λ 1 1 3−λ

−2i , −1 + 2i, 1 1 + 2i

T

= (1 − λ)(3 − λ) − 1 = λ2 − 4λ + 2.

Eigenvalues:λ1/2 = 2 ± √ 2 √ 2 x = 0, x= √ (−1 + 4−2 2 1 √ 2, 1)T

Eigenvectors: λ = 2 + −1 − √ √

2 √1 1 1− 2

λ=2−

2 √ 2 √1 1 1+ 2 x = 0, x= √ (−1 − 4+2 2 1 √ 2, 1)T

−1 +

2

 B

2 √ 4−2 2 √1 √ 4−2 2

−1+ √

−1− 2 √ √

  √ 2+ 2 0

4+2 2 1 √ 4+2 2

B −1 = B T ,

B −1 AB =

0√ 2− 2