Cónicas

Solo disponible en BuenasTareas
  • Páginas : 6 (1316 palabras )
  • Descarga(s) : 8
  • Publicado : 15 de julio de 2010
Leer documento completo
Vista previa del texto
Tipos de Cónicas


Esquema de las tres secciones cónicas.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:
• β < α : Hipérbola (azul)
• β = α : Parábola (verde)
• β > α : Elipse (amarillo)
• β = 90º: Circunferencia (un caso particular de elipse) (rojo)Si el plano pasa por el vértice del cono, se puede comprobar que:
• Cuando β > α la intersección es un único punto (el vértice).
• Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono).
• Cuando β < α la intersección vendrá dada por dos rectas que se cortan en el vértice. El ángulo formado por las rectas irá aumentando a medida β disminuye, hasta alcanzarel máximo (α) cuando el plano contenga al eje del cono (β = 0).
Características
La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es constante.
Además de los focos F y F´, en una elipse destacan los siguientes elementos:
• Centro, O
• Eje mayor, AA´
• Eje menor, BB´
• Distancia focal, OF
La elipse tiene lasiguiente expresión algebraica:

La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante y menor que la distancia entre los focos.
Tiene dos asíntotas (rectas cuyas distancias a la curva tienden a cero cuando la curva se aleja hacia el infinito). Las hipérbolas cuyas asíntotas son perpendiculares se llamanhipérbolas equiláteras.
Además de los focos y de las asíntotas, en la hipérbola destacan los siguientes elementos:
• Centro, O
• Vértices, A y A
• Distancia entre los vértices
• Distancia entre los focos
La ecuación de una hipérbola con centro (0, 0), es:
La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco, y de una recta llamada directriz.Además del foco, F, y de la directriz, d, en una parábola destacan los siguientes elementos:
• Eje, e
• Vértice, V
• Distancia de F a d, p.
Una parábola, cuyo vértice está en el origen y su eje coincide con el de ordenadas, tiene la siguiente ecuación:

Sección cónica

Las tres secciones cónicas: elipse, parábola e hipérbola. La circunferencia es un caso particular de elipse.
Se denominasección cónica (o simplemente cónica) a la curva intersección de un cono con un plano que no pasa por su vértice. Se clasifican en tres tipos: elipses, parábolas e hipérbolas.
Expresión algebraica


Partiendo de una circunferencia (e=0), al aumentar la excentricidad se obtienen elipses, parábolas e hipérbolas.
En coordenadas cartesianas, las cónicas se expresan en forma algebraica medianteecuaciones cuadráticas de dos variables (x,y) de la forma:

en la que, en función de los valores de los parámetros, se tendrá:
h² > ab: hipérbola.
h² = ab: parábola.
h² < ab: elipse.
a = b y h = 0: circunferencia (considerada un caso particular de elipse).

* Las cónicas son curva de intersección de un cono con un plano que no pasa por su vértice. En función de la relación existenteentre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:
CURVAS CÓNICAS

* Una sección cónica es cualquier curva producida por la intersección de un plano y un cono recto triangular. Dependiendo del ángulo del plano relativo al cono, la intersección es un círculo, una elipse, una hipérbola o una parábolaLas Cónicas se pueden describir como curvas planas que son los caminos de un punto en movimiento para que el radio de su distancia forme un punto arreglado (foco) a la distancia de la línea determinada (directriz) que es constante
Si la excentricidad es cero, la curva forma un círculo, si es igual a dos, forma una parábola, si es menor a uno, forma una elipse, y si es mayor a uno, forma una...
tracking img