Cologaritmo

Solo disponible en BuenasTareas
  • Páginas : 9 (2134 palabras )
  • Descarga(s) : 12
  • Publicado : 27 de julio de 2010
Leer documento completo
Vista previa del texto
INDICE PAG. • Índice .. 1 • Introducción .. 2 • Funciones matemáticas ♦ Función, Concepto, etc.... 3−4 ♦ Función Cuadrática.. 5−6 ♦ Función Logarítmica 7−11 ♦ Función Exponencial... 12−16 ♦ Función Lineal. 17−18 • Conclusión .. 19 INTRODUCCION En el presente trabajo, se detallarán las diferentes funciones matemáticas y sus aplicaciones sobre las distintas ciencias y la vida cotidiana. Lasfunciones a las que nos dedicaremos son las siguientes: Función Cuadrática Función Lineal Función Logarítmica Función Exponencial El principal objetivo de este trabajo es poder entender el uso de las funciones y así poder utilizarlas frente a los problemas diarios. FUNCIÓNES Una Función Es una regla de asociación que relaciona dos o mas conjuntos entre si; generalmente cuando tenemos la asociación dosconjuntos las función se define como una regla de asociación entre un conjunto llamado dominio con uno llamado codominio, también dominio e imagen respectivamente o dominio y rango. Esta regla de asociación no permite relacionar un mismo elemento del dominio con dos elementos del codominio. Figura 1. Definición de función que se ampara bajo una regla de asociación de elementos del dominio conelementos del codominio, imponiendo la restricción de relacionar un elemento del dominio con uno del codominio, sin importar si los elementos del codominio puedan estar relacionados con dos o mas del codominio. Donde se dice que f : A B (f es una función de A en B, o f es una función que toma elementos del dominio A y los aplica sobre otro llamado codominio B)

1

Se dice que el dominio de unafunción son todos los valores que puede tomar el conjunto del dominio y que encuentra correspondencia en el conjunto llamado codominio, generalmente cuando se habla del plano, el dominio es el intervalo de valores que están sobre el eje de las X´s y que nos generan una asociación en el eje de las Y´s.

El otro conjunto que interviene en la definición es el conjunto llamado codominio o rango de lafunción, en ocasiones llamado imagen, este conjunto es la gama de valores que puede tomar la función; en el caso del plano son todos los valores que puede tomar la función o valores en el eje de las Y´s.

También, cuando se grafica en el plano cartesiano se tiene una relación de dos variables, considerando como variable aquella literal que esta sujeta a los valores que puede tomar la otra. •Variables dependientes Son aquellas variables que como su nombre lo indica, dependen del valor que toma las otras variables Por ejemplo: f(x)= x, y o f(x) es la variable dependiente ya que esta sujeta a los valores que se le subministre a x. • Variable independiente Es aquella variable que no depende de ninguna otra variable, en el ejemplo anterior la x es la variable independiente ya que la y es laque depende de los valores de x. • Variable constante Es aquella que no esta en función de ninguna variable y siempre tiene el mismo valor ejemplo: Y=2, la constante gravitacional, entre otras.

FUNCION CUADRATICA Una función cuadrática es aquella que puede escribirse de la forma: f(x) = ax2 + bx +c Donde a, b y c son números reales cualesquiera y a distinto de cero. Si representamos "todos" lospuntos (x,f(x)) de una función cuadrática, obtenemos siempre una curva llamada parábola. Como ejemplo, ahí tienes la representación gráfica de dos funciones cuadráticas muy sencillas: • f(x) = x2 • f(x) = −x2

2

• Obtención El vértice de una parábola está situado en el eje de ésta y, por tanto, su abscisa será el punto medio de las abscisas de dos puntos de la parábola que sean simétricos.Como toda función cuadrática pasa por el punto (0, c) y el simétrico de éste tiene de abscisa x = −b/a, la del vértice será Xv = −b/2a. La ordenada Yv se calcula sustituyendo el valor de Xv en la ecuación de la función. • Intersección de la parábola con los ejes • Intersección con el eje OY: Como todos los puntos de este eje tienen la abscisa x = 0, el punto de corte de la parábola con el eje OY...
tracking img