Consultas

Solo disponible en BuenasTareas
  • Páginas : 8 (1966 palabras )
  • Descarga(s) : 9
  • Publicado : 5 de julio de 2010
Leer documento completo
Vista previa del texto
Cantidad de movimiento

La cantidad de movimiento, momento lineal, ímpetu o moméntum es una magnitud vectorial, unidad SI: (kg m/s) que, en mecánica clásica, se define como el producto de la masa del cuerpo y su velocidad en un instante determinado. En cuanto al nombre, Galileo Galilei en su Discursos sobre dos nuevas ciencias usa el término italiano impeto, mientras que Isaac Newton usa enPrincipia Mathematica el término latino motus[1] (movimiento) y vis (fuerza). Moméntum es una palabra directamente tomada del latín mōmentum, derivado del verbo mŏvĕre 'mover'
En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante definición como el producto de la masa (kg) de un cuerpo material por su velocidad (m/s), para luego analizar su relación con la ley deNewton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, después del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.
El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa,necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones.
La cantidad de movimiento obedece a una ley de conservación, lo cual significa que la cantidad de movimiento total de todo sistema cerrado (o sea uno que no es afectado por fuerzas exteriores, y cuyasfuerzas internas no son disipadoras) no puede ser cambiada y permanece constante en el tiempo.
En el enfoque geométrico de la mecánica relativista la definición es algo diferente. Además, el concepto de momento lineal puede definirse para entidades físicas como los fotones o los campos electromagnéticos, que carecen de masa en reposo. No se debe confundir el concepto de momento lineal con otroconcepto básico de la mecánica newtoniana, denominado momento angular, que es una magnitud diferente.
Finalmente, se define el impulso recibido por una partícula o un cuerpo como la variación de la cantidad de movimiento durante un período dado:
[pic]
siendo pf la cantidad de movimiento al final del intervalo y p0 al inicio del intervalo.

Cantidad de movimiento en mecánica clásica

[editar]Mecánica newtoniana

Históricamente el concepto de cantidad de movimiento surgió en el contexto de la mecánica newtoniana en estrecha relación con el concepto de velocidad y el de masa. En mecánica newtoniana se define la cantidad de movimiento lineal como el producto de la masa por la velocidad:
[pic]
La idea intuitiva tras esta definición está en que la "cantidad de movimiento"dependía tanto de la masa como de la velocidad: si se imagina una mosca y un camión, ambos moviéndose a 40 km/h, la experiencia cotidiana dice que la mosca es fácil de detener con la mano mientras que el camión no, aunque los dos vayan a la misma velocidad. Esta intuición llevó a definir una magnitud que fuera proporcional tanto a la masa del objeto móvil como a su velocidad.

[editar] Mecánicalagrangiana y hamiltoniana

En las formulaciones más abstractas de la mecánica clásica, como la mecánica lagrangiana y la mecánica hamiltoniana, además del momento lineal y del momento angular se pueden definir otros momentos, llamados momentos generalizados o momentos conjugados, asociados a cualquier tipo de coordenada generalizada. Se generaliza así la noción de momento.
Si se tiene un sistemamecánico definido por su lagrangiano L definido en términos de las coordenadas generalizadas (q1,q2,...,qN) y las velocidades generalizadas, entonces el momento conjugado de la coordenada qi viene dado por:
[pic]
Cuando la coordenada qi es una de las coordenadas de un sistema de coordenadas cartesianas, el momento conjugado coincide con una de las componentes del momento lineal, y, cuando...
tracking img