Criminologia

Solo disponible en BuenasTareas
  • Páginas : 11 (2737 palabras )
  • Descarga(s) : 0
  • Publicado : 8 de marzo de 2011
Leer documento completo
Vista previa del texto
La estadística descriptiva es una gran parte de la estadística que se dedica a analizar y representar los datos. Este análisis es muy básico. Aunque hay tendencia a generalizar a toda la población, las primeras conclusiones obtenidas tras un análisis descriptivo, es un estudio calculando una serie de medidas de tendencia central, para ver en qué medida los datos se agrupan o dispersan en torno aun valor central.
Medidas de tendencia central
Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro de la distribución de datos se denomina medida o parámetro de tendencia central o de centralización. Cuando se hace referencia únicamente a la posición de estos parámetros dentrode la distribución, independientemente de que ésta esté más o menos centrada, se habla de estas medidas como medidas de posición.1 En este caso se incluyen también los cuantiles entre estas medidas.
Media aritmética o promedio



La media aritmética es, probablemente, uno de los parámetros estadísticos más extendidos
Dado un conjunto numérico de datos, x1, x2, ..., xn, se define su mediaaritmética como

Esta definición varía, aunque no sustancialmente, cuando se trata de variables continuas.
Sus propiedades son:
• Su cálculo es muy sencillo y en él intervienen todos los datos.
• Se interpreta como "punto de equilibrio" o "centro de masas" del conjunto de datos, ya que tiene la propiedad de equilibrar las desviaciones de los datos respecto de su propio valor:

• Minimizalas desviaciones cuadráticas de los datos respecto de cualquier valor prefijado, esto es, el valor de es mínimo cuando . Este resultado se conoce como Teorema de König. Esta propiedad permite interpretar uno de los parámetros de dispersión más importantes: la varianza.
• Se ve afectada por transformaciones afines (cambios de origen y escala), esto es, si
xi' = axi + b entonces , donde es lamedia aritmética de los xi', para i = 1, ..., n y a y b números reales.
Este parámetro, aún teniendo múltiples propiedades que aconsejan su uso en situaciones muy diversas, tiene también algunos inconvenientes, como son:
• Para datos agrupados en intervalos (variables continuas) su valor oscila en función de la cantidad y amplitud de los intervalos que se consideren.
Es una medida a cuyosignificado afecta sobremanera la dispersión, de modo que cuanto menos homogéneos son los datos, menos información proporciona. Dicho de otro modo, poblaciones muy distintas en su composición pueden tener la misma media. Por ejemplo, un equipo de baloncesto con cinco jugadores de igual estatura, 1,95, pongamos por caso, tendría una estatura media de 1,95, evidentemente, valor que representa fielmente aesta homogénea población. Sin embargo, un equipo de estaturas más heterogéneas, 2,20, 2,15, 1,95, 1,75 y 1,70, por ejemplo, tendría también, como puede comprobarse, una estatura media de 1,95, valor que no representa a casi ninguno de Medidas de tendencia central

Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, paratal fin, suele situarse hacia el centro de la distribución de datos se denomina medida o parámetro de tendencia central o de centralización. Cuando se hace referencia únicamente a la posición de estos parámetros dentro de la distribución, independientemente de que ésta esté más o menos centrada, se habla de estas medidas como medidas de posición.1 En este caso se incluyen también los cuantilesentre estas medidas.
• sus componentes.
• Es muy sensible a los valores extremos de la variable. Por ejemplo, en el cálculo del salario medio de un empresa, el salario de un alto directivo que gane 1.000.000 de € tiene tanto peso como el de mil empleados "normales" que ganen 1.000 €, siendo la media de aproximadamente 2.000 €.
Media ponderada
Se denomina media ponderada de un conjunto de...
tracking img