Dada

Solo disponible en BuenasTareas
  • Páginas : 8 (1882 palabras )
  • Descarga(s) : 0
  • Publicado : 19 de diciembre de 2011
Leer documento completo
Vista previa del texto
Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

An´lisis de Se˜ales II a n
Convoluci´n, correlaci´n y filtros o o Mario I. Caicedo

3 de mayo de 2006

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Se˜ales causales n

Definici´n o Una se˜al f (t)se denomina causal sii f (t) = 0 ∀ t < 0 n Observaci´n o Toda se˜al causal se puede expresar como f (t) = H(t) f (t) n Observaci´n o Las se˜ales causales consituyen un espacio vectorial (V). n

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Discusi´n o ¿Por qu´ nosinteresan las se˜ales causales? e n Discusi´n o ¿Estaremos interesados en todas las se˜ales causales? n

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Convoluci´n o
Definici´n o La convoluci´n es un mapa o ∗:V ×V →V dado por ∗ : f1 , f2 → g = f1 ∗ f2 con f1 ∗ f2 = ds f1(s) f2 (t − s)

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Convoluci´n Gr´fica o a

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

FiltrosPropiedades

Bilinealidad f ∗ (g1 + α g2 ) = f ∗ g1 + α f ∗ g2 ∀α constante. conmutatividad “Faltung theorem”

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Propiedades

Bilinealidad f ∗ (g1 + α g2 ) = f ∗ g1 + α f ∗ g2 ∀α constante. conmutatividad “Faltung theorem”Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Propiedades

Bilinealidad f ∗ (g1 + α g2 ) = f ∗ g1 + α f ∗ g2 ∀α constante. conmutatividad “Faltung theorem”

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Propiedades

Bilinealidad f ∗ (g1 + α g2 ) = f ∗ g1 + α f ∗ g2 ∀α constante. conmutatividad “Faltung theorem”

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Faltung Theorem

Teorema La transformada deFourier de la convoluci´n de dos se˜ales o n satisface la identidad TF [f1 ∗ f2 ] = TF [f1 ] TF [f2 ] .

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Correlaci´n o
Definici´n o Sea E el espacio de todas las se˜ales, la correlaci´n es un mapa n o :V ×V →E dado por : f1, f2 → c = f1 con c(t) = f1 f2 ≡ ds f1∗ (s) f2 (s + t) f2

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Interpretaci´n o

La correlation es una medida de la similaridad entre dos se˜ales. n Se usa con frecuencia para buscar caracter´ ısticas en una se˜al ncompar´ndola con una se˜al conocida. a n La correlaci´n es funci´n de la separaci´n temporal relativa o o o entre dos se˜ales. n

Mario I. Caicedo An´lisis de Se˜ales II a n

Departamento de F´ ısica, Universidad Sim´n Bol´ o ıvar

Introducci´n o

Convoluci´n o

Cros-correlaci´n o

Filtros

Interpretaci´n o

La correlation es una medida de la similaridad entre dos se˜ales. n Se usa con...
tracking img