Dfgvfd

Solo disponible en BuenasTareas
  • Páginas : 7 (1735 palabras )
  • Descarga(s) : 0
  • Publicado : 9 de mayo de 2010
Leer documento completo
Vista previa del texto
Que es trigonometría

La trigonometría es una rama de la matemática, cuyo significado etimológico es "la medición de los triángulos". Se deriva del vocablo griego τριγωνο "triángulo" + μετρον "medida".[1]
La trigonometría es la rama de las matemáticas que estudia las relaciones entre los ángulos y los lados de los triángulos. Para esto se vale de las razones trigonométricas, las cuales sonutilizadas frecuentemente en cálculos técnicos.
En términos generales, la trigonometría es el estudio de las funciones seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el casodel estudio de las esferas en la geometría del espacio.
Posee numerosas aplicaciones: las técnicas de triangulación, por ejemplo, son usadas en astronomía para medir distancias a estrellas próximas, en la medición de distancias entre puntos geográficos, y en sistemas de navegación por satélites.
Función trigonométrica
Las funciones trigonométricas, en matemáticas, son relaciones angulares;guardan relación con el estudio de la geometría de los triángulos y son de gran importancia en astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.
[pic]

Conceptos básicos [pic]

Identidades trigonométricas fundamentales.

Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulorectángulo asociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos ynegativos, e incluso a números complejos.
Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunes antiguamente, y aparecen en las primeras tablas, pero no se utilizan actualmente; por ejemplo el verseno (1 − cos θ) y la exsecante(sec θ − 1).
|Función |Abreviatura |Equivalencia |
|Seno |sin |[pic] |
|Coseno |cos |[pic] |
|Tangente |tan|[pic] |
|Cotangente |cot |[pic] |
|Secante |sec |[pic] |
|Cosecante |csc (cosec) |[pic]|

Definiciones respecto de un triángulo rectángulo

[pic]

Para definir las razones trigonométricas del ángulo: α, del vértice A, se parte de un triángulo rectángulo arbitrario que contiene a este ángulo. El nombre de los lados de este triángulo rectángulo que se usará en los sucesivo será:
• La hipotenusa (h) es el lado opuesto al ángulo recto, o lado de mayorlongitud del triángulo rectángulo.
• El cateto opuesto (a) es el lado opuesto al ángulo que queremos determinar.
• El cateto adyacente (b) es el lado adyacente al ángulo del que queremos determinar.
Todos los triángulos considerados se encuentran en el Plano Euclidiano, por lo que la suma de sus ángulos internos es igual a π radianes (o 180°). En consecuencia, en cualquier triángulo...
tracking img