Dinamica rotacional

Solo disponible en BuenasTareas
  • Páginas : 6 (1500 palabras )
  • Descarga(s) : 0
  • Publicado : 9 de diciembre de 2009
Leer documento completo
Vista previa del texto
El movimiento de rotación de un cuerpo rígido alrededor de un eje fijo, consiste en que el cuerpo traza una trayectoria circular con centro en el eje de giro, y en cada rotación de 360° (revolución) dos puntos cualesquiera del cuerpo trazan círculos concéntricos. Para ejemplificar en la figura 1 se muestra el movimiento de una polea fija y un engrane girando alrededor de un eje.Introducción Hasta ahora hemos estudiado el movimiento de traslación de partículas, sistemas de partículas o de sólidos considerados como un único punto representado por su centro de masa o de rotación de una partícula respecto a un punto.Justamente a través de la dinámica rotacional estudiaremos el movimiento de rotación de un cuerpo rígido.Cuerpo rígidoConsideraremos a un cuerpo como rígido, cuando su forma novaría aún cuando se mueve  sometido a la acción de fuerzas. * En consecuencia, la distancia entre las diferentes partículas que lo forman, permanece incambiada a lo largo del tiempo. * Si bien el cuerpo rígido ideal no existe, es una muy buena aproximación para encarar el estudio de muchos cuerpos. Modos de movimiento de un cuerpo rígido  Traslación | En este caso el cuerpo rígido setraslada, de modo que en cada instante las partículas que lo forman, tienen la misma velocidad y aceleración. |
Rotación | El cuerpo rígido está en rotación, cuando cada partícula que lo integra, se mueve respecto a un eje con la misma velocidad angular y aceleración angular en cada instante. |
General | En este caso tendremos una combinación de los dos anteriores, es decir una rotación y traslación quepuede ser estudiado como una traslación y rotación del centro de masa que lo representa más una rotación respecto al centro de masa. |
  Momento angular o cinético de un cuerpo rígido Hemos visto como se calcula el momento cinético o angular de una partícula, luego de un sistema de partículas y cómo se podía considerar el momento cinético de un sistema de partículas respecto a un puntoconsiderando el momento cinético respecto al centro de masa.Ahora vamos a establecer cual es la forma de calcular el momento angular o cinético de un cuerpo rígido y por lo tanto indeformable. Supongamos por simplicidad un cuerpo rígido en forma de cubo girando alrededor de un eje horizontal, como se ve en la figura. Todas las partículas que lo forman girarán con una misma velocidad angular en ciertoinstante y por lo tanto el módulo de su velocidad lineal seráY el momento angular o cinético respecto al punto "A" será  El vector correspondiente al momento cinético así calculado resulta ser de acuerdo a la regla de la mano derecha y a su definición, perpendicular al plano definido por los vectores y y en consecuencia es perpendicular al vector   y como forma un ángulo con el eje de giro. Parahallar la proyección del vector respecto al eje () debemos multiplicar el valor de por el coseno de .Observando que los vectores , y el EJE de rotación están en el mismo plano y que el vector es perpendicular al vector tendremos que:por lo que  Por lo tanto el valor de la proyección del momento cinético sobre el eje será:  como  y observamos que en la figura que se cumple: los queda que el módulo delvector sustituyendo valores nos queda:  En esta expresión, no aparece el seno del ángulo comprendido entre los vectores y , dado que es perpendicular al plano determinado por y y pertenece a dicho plano. Por lo que desarrollando esta expresión y sustituyendo el valor del seno de beta obtenemos: como sabemos que  y realizando las operaciones de potenciación y simplificación obtenemos:  Paraobtener la expresión de el momento cinético total del cuerpo rígido, deberemos hacer la sumatoria de los momentos cinéticos de los diferentes puntos que lo integran en dicho instante. .Debido a que la velocidad angular es constante, la sacamos como factor común, obteniendo:  A la expresión que se encuentra entre paréntesis, se le llama momento de inercia  del sólido respecto al eje considerado, que...
tracking img