Distribucion chi cuadrado

Solo disponible en BuenasTareas
  • Páginas : 7 (1540 palabras )
  • Descarga(s) : 4
  • Publicado : 4 de marzo de 2010
Leer documento completo
Vista previa del texto
Distribución χ²
En estadística, la distribución χ² (de Pearson) es una distribución de probabilidad continua con un parámetro k que representa los grados de libertad de la variable aleatoria:

donde Zi son variables de distribución normal, de media cero y varianza uno. El que la variable aleatoria X tenga esta distribución se representa habitualmente así: .
Es conveniente tener en cuentaque la letra griega χ se transcribe al latín como chi1 y se pronuncia en castellano como ji.2 3
La distribución χ² tiene muchas aplicaciones en inferencia estadística, por ejemplo en la denominada prueba χ² utilizada como prueba de independencia y como prueba de bondad de ajuste y en la estimación de varianzas. También está involucrada en el problema de estimar la media de una poblaciónnormalmente distribuida y en el problema de estimar la pendiente de una recta de regresión lineal, a través de su papel en la distribución t de Student, y participa en todos los problemas de análisis de varianza, por su papel en la distribución F de Snedecor, que es la distribución del cociente de dos variables aleatorias independientes con distribución χ².

DISTRIBUCION JI-CUADRADA (X2)
En realidad ladistribución ji-cuadrada es la distribución muestral de s2. O sea que si se extraen todas las muestras posibles de una población normal y a cada muestra se le calcula su varianza, se obtendrá la distribución muestral de varianzas.
Para estimar la varianza poblacional o la desviación estándar, se necesita conocer el estadístico X2. Si se elige una muestra de tamaño n de una población normal convarianza , el estadístico:

tiene una distribución muestral que es una distribución ji-cuadrada con gl=n-1 grados de libertad y se denota X2 (X es la minúscula de la letra griega ji). El estadístico ji-cuadrada esta dado por:

donde n es el tamaño de la muestra, s2 la varianza muestral y la varianza de la población de donde se extrajo la muestra. El estadístico ji-cuadrada también se puededar con la siguiente expresión:

Propiedades de las distribuciones ji-cuadrada
1. Los valores de X2 son mayores o iguales que 0.
2. La forma de una distribución X2 depende del gl=n-1. En consecuencia, hay un número infinito de distribuciones X2.
3. El área bajo una curva ji-cuadrada y sobre el eje horizontal es 1.
4. Las distribuciones X2 no son simétricas. Tienen colas estrechas que seextienden a la derecha; esto es, están sesgadas a la derecha.
5. Cuando n>2, la media de una distribución X2 es n-1 y la varianza es 2(n-1).
6. El valor modal de una distribución X2 se da en el valor (n-3).
La siguiente figura ilustra tres distribuciones X2. Note que el valor modal aparece en el valor (n-3) = (gl-2).

La función de densidad de la distribución X2 esta dada por:
para x>0La tabla que se utilizará para estos apuntes es la del libro de probabilidad y estadística de Walpole, la cual da valores críticos (gl) para veinte valores especiales de . Para denotar el valor crítico de una distribución X2 con gl grados de libertad se usa el símbolo (gl); este valor crítico determina a su derecha un área de bajo la curva X2 y sobre el eje horizontal. Por ejemplo paraencontrar X20.05(6) en la tabla se localiza 6 gl en el lado izquierdo y a o largo del lado superior de la misma tabla.

Cálculo de Probabilidad
El cálculo de probabilidad en una distribución muestral de varianzas nos sirve para saber como se va a comportar la varianza o desviación estándar en una muestra que proviene de una distribución normal.
Ejemplos:
1. Suponga que los tiempos requeridos porun cierto autobús para alcanzar un de sus destinos en una ciudad grande forman una distribución normal con una desviación estándar =1 minuto. Si se elige al azar una muestra de 17 tiempos, encuentre la probabilidad de que la varianza muestral sea mayor que 2.
Solución:
Primero se encontrará el valor de ji-cuadrada correspondiente a s2=2 como sigue:

El valor de 32 se busca adentro de la...
tracking img