Distribucion exponencial

Solo disponible en BuenasTareas
  • Páginas : 4 (902 palabras )
  • Descarga(s) : 0
  • Publicado : 2 de mayo de 2011
Leer documento completo
Vista previa del texto
DISTRIBUCIÓN EXPONENCIAL

A pesar de la sencillez analítica de sus funciones de definición, la distribución exponencial tiene una gran utilidad práctica ya que podemos considerarla como unmodelo adecuado para la distribución de probabilidad del tiempo de espera entre dos hechos que sigan un proceso de Poisson. De hecho la distribución exponencial puede derivarse de un proceso experimentalde Poisson con las mismas características que las que enunciábamos al estudiar la distribución de Poisson, pero tomando como variable aleatoria , en este caso, el tiempo que tarda en producirse unhecho

Obviamente, entonces , la variable aleatoria será continua. Por otro lado existe una relación entre el parámetro a de la distribución exponencial , que más tarde aparecerá , y el parámetro deintensidad del proceso l , esta relación es a = l

Al ser un modelo adecuado para estas situaciones tiene una gran utilidad en los siguientes casos:

· Distribución del tiempo de espera entresucesos de un proceso de Poisson

· Distribución del tiempo que transcurre hasta que se produce un fallo, si se cumple la condición que la probabilidad de producirse un fallo en un instante no dependedel tiempo transcurrido .Aplicaciones en fiabilidad y teoría de la supervivencia.

Función de densidad.

A pesar de lo dicho sobre que la distribución exponencial puede derivarse de un procesode Poisson , vamos a definirla a partir de la especificación de su función. de densidad:

Dada una variable aleatoria X que tome valores reales no negativos {x ³ 0} diremos que tiene unadistribución exponencial de parámetro a con a ³ 0, si y sólo si su función de densidad tiene la expresión:

Diremos entonces queGráficamente como ejemplo planteamos el modelo con parámetro a =0,05









En consecuencia , la función de distribución será:...
tracking img