Ecuaciones diferenciales de 2do orden

Solo disponible en BuenasTareas
  • Páginas : 16 (3827 palabras )
  • Descarga(s) : 0
  • Publicado : 17 de junio de 2011
Leer documento completo
Vista previa del texto
Moisés Villena Muñoz

Cap. 2 Ecuaciones Diferenciales de segundo orden

2
2.1 Ecuación Diferenciales de segundo orden con coeficientes constantes. 2.1 2.2 Ecuaciones diferenciales de orden superior 2.3 Análisis Cualitativo

Objetivos.
Se persigue que el estudiante: • Encuentre soluciones generales y/o particulares de Ecuaciones Diferenciales de segundo orden • Determine Estabilidaddinámica cuantitativa y/o cualitativamente.

1

Moisés Villena Muñoz

Cap. 2 Ecuaciones Diferenciales de segundo orden

2.1 ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN CON COEFICIENTES CONSTANTES.
Una ecuación diferencial de segundo orden es de la forma:

y´´+ p ( x ) y´+ q ( x ) y = g ( x )
Si g ( x ) = 0 se llama Ecuación homogénea caso contrario; es decir, si g ( x) ≠ 0 se llama Ecuación nohomogénea. Una ecuación diferencial de segundo orden con coeficientes constantes es de la forma:

ay´´+by´+ cy = g ( x )

donde a , b y c ∈ IR y a ≠ 0

2.1.1 ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN CON COEFICIENTES CONSTANTES HOMOGÉNEA Una ecuación diferencial de Segundo Orden con coeficientes constantes homogénea es de la forma:

ay´´+by´+ cy = 0
La función " y ", solución general dela ecuación diferencial anterior, es de la forma y ( x ) = ke de la solución.
rx

(¿Por qué?). Donde " k " es una constante que da la generalidad

Entonces el objetivo ahora será hallar el valor de r . Bien, de la solución general tenemos:
y ′ = kre rx y ′′ = kr 2 e rx

Reemplazando en ay´´+by´+ cy = 0 tenemos:
akr 2 e rx + bkre rx + cke rx = 0 ke rx ar 2 + br + c = 0

[

]

Ahorabien, k ≠ 0 porque si no tuviéramos las solución trivial y como también e rx ≠ 0 , entonces ar 2 + br + c = 0 . A esta expresión se la denomina Ecuación Auxiliar y es útil para hallar r . Observe que la ecuación auxiliar es una ecuación cuadrática cuyas raices se las puede determinar empleando la formula general

2

Moisés Villena Muñoz

Cap. 2 Ecuaciones Diferenciales de segundo orden

r1, r2 =

− b ± b 2 − 4ac 2a

Aquí se presentan tres casos. Caso I Discriminante positivo b 2 − 4ac > 0 . Entonces r1 y r2 son raíces reales y diferentes. En este caso se dice que existen dos soluciones fundamentales
y1 ( x) = k1e r x
1

[

]

y 2 ( x) = k 2 e r x
2

La solución General estaría dada por la combinación lineal de las soluciones fundamentales
y ( x) = k1e r x + k 2 e rx
1 2

Caso II

Discriminante cero b 2 − 4ac = 0 . Entonces r1 y r2 son raíces iguales. En este caso la solución General sería: y ( x ) = k1e rx + k 2 xe rx Caso III

[

]

reales e

Discriminante negativo b 2 − 4ac < 0 . Entonces r1 = λ + µi y r2 = λ − µi son raíces complejas conjugadas Reemplazando en y ( x ) = C1e r x + C 2 e r x tenemos:
1 2

[

]

y ( x) =C 1e ( λ +µi ) x+ C 2 e ( λ −µi ) x y ( x) =C 1e λx e µix + C 2 e λx e −µix y ( x) = e λx C 1e µix + C 2 e −µix

[

]

Como e iµx = cos µx + i sen µx y e − iµx = cos µx − i sen µx Reemplazando tenemos:
y ( x) = e λx [C 1(cos µx + i sen µx) + C2 (cos µx − i sen µx)] y ( x) = e λx [(C 1+C2 ) cos µx + (C 1i + C2i ) sen µx ]

Por lo tanto la solución sería y ( x ) = e λx [k1 sen(µx ) + k 2 cos(µx )] Ejemplo1
Encuentre la solución general para y ′′ − 4 y ′ − 12 y = 0 SOLUCIÓN:
En este caso la ecuación auxiliar sería r 2 − 4r − 12 = 0

3

Moisés Villena Muñoz

Cap. 2 Ecuaciones Diferenciales de segundo orden

Hallando las raíces tenemos Por tanto:

(r − 6)(r + 2) = 0 r = 6 r = −2

y1 ( x) = k1e 6 x y 2 ( x) = k 2 e −2 x y ( x) = k1e 6 x + k 2 e −2 x
Podemos comprobar que efectivamenteesta es la función que satisface la ecuación diferencial dada. Obtengamos la primera y la segunda derivada

y ′ = 6k1e 6 x − 2k 2 e −2 x y ′′ = 36k1e 6 x + 4k 2 e − 2 x
Luego, reemplazando

36k1e 6 x + 4k 2 e −2 x − 24k1e 6 x + 8k 2 e −2 x − 12k1e 6 x − 12k 2 e −2 x = 0 0=0

Ejemplo 2
Encuentre la solución general para 2 y ′′ − 3 y ′ + y = 0 , y (0) = 1 y ′(0) = 1 SOLUCIÓN:
En este...
tracking img