El método de monte carlos

Solo disponible en BuenasTareas
  • Páginas : 5 (1084 palabras )
  • Descarga(s) : 0
  • Publicado : 11 de junio de 2011
Leer documento completo
Vista previa del texto
El método De Montecarlo Es un método numérico que permite resolver problemas físicos y matemáticos mediante la simulación de variables aleatorias. Lo vamos a considerar aquí desde un punto de vista didáctico para resolver un problema del que conocemos tanto su solución analítica como numérica. El método Montecarlo fue bautizado así por su clara analogía con los juegos de ruleta de los casinos, elmás célebre de los cuales es el de Montecarlo, casino cuya construcción fue propuesta en 1856 por el príncipe Carlos III de Mónaco, siendo inaugurado en 1861. La importancia actual del método Montecarlo se basa en la existencia de problemas que tienen difícil solución por métodos exclusivamente analíticos o numéricos, pero que dependen de factores aleatorios o se pueden asociar a un modeloprobabilística artificial (resolución de integrales de muchas variables, minimización de funciones, etc.). Gracias al avance en diseño de los ordenadores, cálculos Montecarlo que en otro tiempo hubieran sido inconcebibles, hoy en día se presentan como asequibles para la resolución de ciertos problemas. En estos métodos el error ~ 1/√N, donde N es el número de pruebas y, por tanto, ganar una cifradecimal en la precisión implica aumentar N en 100 veces. La base es la generación de números aleatorios de los que nos serviremos para calcular probabilidades. Conseguir un buen generador de estos números así como un conjunto estadístico adecuado sobre el que trabajar son las primeras dificultades con la nos vamos a encontrar a la hora de utilizar este método. En el caso que presentamos hemos hecho usode la función random() incluida en la clase Math que la máquina virtual Java trae por defecto como generador. Las pruebas realizadas, algunas de las cuales se propondrán como ejercicio, verifican su calidad a la hora de calcular números aleatorios sin tendencia aparente a la repetición ordenada. Para resolver la ecuación elíptica de nuestro problema usando el método de Montecarlo, se ha divididoel recinto bidimensional en una malla cuadrada de puntos. Todos los situados en su frontera se consideran inicializados a un valor de temperatura conocido. Suponemos en principio una partícula situada en uno de los puntos y que tiene la posibilidad de moverse libremente por todos los que constituyen la malla. La única condición que imponemos es que en un solo salto, su movimiento se limite a los 4nodos vecinos, los situados su izquierda, derecha, arriba o abajo. La probabilidad de elegir una cualquiera de las 4 direcciones posibles es la misma. Dejando a la partícula viajar por toda la red sin más restricciones contamos el número de veces que, partiendo de un mismo punto de coordenadas (i,j) sale por cada uno de los que constituyen la frontera, momento en el cual suponemos que ha terminadosu viaje. Considerando un número elevado de pruebas podemos calcular la probabilidad de que, partiendo de un mismo punto, salga por cada uno de los puntos del contorno después de recorrer una trayectoria aleatoria. Los detalles de camino seguido desde el inicio hasta el final del viaje no nos importan, tan solo nos vamos a fijar en el número de veces que sale del recinto por cada uno de lospuntos posibles.En la primera etapa de estas investigaciones, John von Neumann y Stanislaw Ulam refinaron esta ruleta rusa y los métodos "de división" de tareas. Sin embargo, el desarrollo sistemático de estas ideas tuvo que esperar al trabajo de Harris y Herman Kahn en 1948. Aproximadamente en el mismo año, Enrico Fermi, Metropolis y Ulam obtuvieron estimadores para los valores característicos de laecuación de Schrodinger para la captura de neutrones a nivel nuclear usando este método.El método de Montecarlo proporciona soluciones aproximadas a una gran variedad de problemas matemáticos posibilitando la realización de experimentos con muestreos de números pseudoaleatorios en una computadora. |
• | El método de Montecarlo (Monte Carlo, MC) se aplica a sistemas moleculares para: predecir...
tracking img