El número pi

Solo disponible en BuenasTareas
  • Páginas : 7 (1746 palabras )
  • Descarga(s) : 0
  • Publicado : 3 de noviembre de 2010
Leer documento completo
Vista previa del texto
Número π
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El valor numérico de π, truncado a sus primeras cifras, es el siguiente:El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e. Por ello, tal vez sea la constante que más pasiones desata entre los matemáticos profesionales y aficionados. La relación entre la circunferencia y su diámetro no es constante en geometrías no euclídeas.π es la relación entre la longitud de una circunferencia y su diámetro. Es una constante en geometría euclidiana.Lista de números – Números irracionales
ζ(3) – √2 – √3 – √5 – φ – α – e – π – δ
Binario 11,00100100001111110110…
Decimal 3,14159265358979323846…
Hexadecimal 3,243F6A8885A308D31319…
Fracción continua
Nótese que la fracción continua no es periódica.


El nombre πLetra griega pi. Símbolo adoptado en 1706 por William Jones y popularizado por Leonhard Euler.La notación con la letra griega π proviene de la inicial de las palabras de origen griego "περιφέρεια" (periferia) y "περίμετρον" (perímetro) de un círculo,[1] notación que fue utilizada primero por William Oughtred (1574-1660), y propuesto su uso por el matemático galés William Jones[2] (1675-1749),aunque fue el matemático Leonhard Euler, con su obra «Introducción al cálculo infinitesimal» de 1748, quien la popularizó. Fue conocida anteriormente como constante de Ludolph (en honor al matemático Ludolph van Ceulen) o como constante de Arquímedes (que no se debe confundir con el número de Arquímedes).

[editar] Historia del cálculo del valor π
La búsqueda del mayor número de decimales delnúmero π ha supuesto un esfuerzo constante de numerosos científicos a lo largo de la historia. Algunas aproximaciones históricas de π son las siguientes.

[editar] Antiguo Egipto

Detalle del papiro Rhind.El valor aproximado de π en las antiguas culturas se remonta a la época del escriba egipcio Ahmes en el año 1800 a. C., descrito en el papiro Rhind,[3] donde se emplea un valor aproximado de πafirmando que: el área de un círculo es similar a la de un cuadrado, cuyo lado es igual al diámetro del círculo disminuido en 1/9, es decir, igual a 8/9 del diámetro. En notación moderna:

Entre los ocho documentos matemáticos hallados de la antigua cultura egipcia, en dos se habla de círculos. Uno es el papiro Rhind y el otro es el papiro de Moscú. Sólo en el primero se habla del valor aproximadodel número π. El investigador Otto Neugebauer, en un anexo de su libro The Exact Sciences in Antiquity,[4] describe un método inspirado en los problemas del papiro de Ahmes para averiguar el valor de π, mediante la aproximación del área de un cuadrado de lado 8, a la de un círculo de diámetro 9.

[editar] Mesopotamia
Algunos matemáticos mesopotámicos empleaban, en el cálculo de segmentos,valores de π igual a 3, alcanzando en algunos casos valores más aproximados, como el de 3 + 1/8.

[editar] Referencias bíblicas
Una de las referencias indirectas más antiguas del valor aproximado de π se puede encontrar en un versículo de la Biblia:

«Hizo fundir asimismo un mar de diez codos de un lado al otro, perfectamente redondo. Tenía cinco codos de altura y a su alrededor un cordón detreinta codos.»

I Reyes 7:23 (Reina-Valera 1995)
Una cita similar se puede encontrar en II Crónicas 4:2. En él aparece en una lista de requerimientos para la construcción del Gran Templo de Salomón, construido sobre el 950 a. C. Ambas citas dan 3 como valor de π lo que supone una notable pérdida de precisión respecto de las anteriores estimaciones egipcia y mesopotámica.


Método de...
tracking img