Ersadf ffff

Solo disponible en BuenasTareas
  • Páginas : 8 (1817 palabras )
  • Descarga(s) : 6
  • Publicado : 23 de febrero de 2010
Leer documento completo
Vista previa del texto
Conversión entre binario y decimal, binario y octal, y binario y hexadecimal

Binario a decimal Para realizar la conversión de binario a decimal, realice lo siguiente:

1. Inicie por el lado derecho del número en binario, cada número multiplíquelo por 2 y elévelo a la potencia consecutiva (comenzando por la potencia 0).
2. Después de realizar cada una de lasmultiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.
Ejemplos:
• 110101 (binario) = 53 (decimal). Proceso:
1*(2) elevado a (0)=1
0*(2) elevado a (1)=0
1*(2) elevado a (2)=4
0*(2) elevado a (3)=0
1*(2) elevado a (4)=16
1*(2) elevado a (5)=32
La suma es: 53
• 10010111 (binario) = 151 (decimal). Proceso:
1*(2) elevado a (0)=1
1*(2) elevado a(1)=2
1*(2) elevado a (2)=4
0*(2) elevado a (3)=0
1*(2) elevado a (4)=16
0*(2) elevado a (5)=0
0*(2) elevado a (6)=0
1*(2) elevado a (7)=128
La suma es: 151
• 110111 (binario) = 55 (decimal). Proceso:
1*(2) elevado a (0)=1
1*(2) elevado a (1)=2
1*(2) elevado a (2)=4
0*(2) elevado a (3)=0
1*(2) elevado a (4)=16
1*(2) elevado a (5)=32
La suma es: 55

También se puede optar porutilizar los valores que presenta cada posición del número binario a ser transformado, comenzando de derecha a izquierda, y sumando los valores de las posiciones que tienen un 1. Por ejemplo: el número binario 1010010 corresponde en decimal al 82 se puede representar de la siguiente manera:
64 32 16 8 4 2 1
1 0 1 0 0 1 0
entonces se suma los números2, 16 y 64:
2
+16
64
----
82

Decimal a binario Se divide el número decimal entre 2 cuyo resultado entero se vuelve a dividir entre 2 y así sucesivamente. Una vez llegados al 1 indivisible se cuentan el último cociente, es decir el uno final (todo número binario excepto el 0 empieza por uno), seguido delos residuos de las divisiones subsiguientes. Del más reciente hasta el primero que resultó. Este número será el binario que buscamos. A continuación se puede ver un ejemplo con el número decimal 100 pasado a binario.

100 |_2
0 50 |_2
0 25 |_2 --> 100 [pic] 1100100
1 12 |_2
0 6 |_2
0 3 |_2
1 1
Otraforma de conversión consiste en un método parecido a la factorización en números primos. Es relativamente fácil dividir cualquier número entre 2. Este método consiste también en divisiones sucesivas. Dependiendo de si el número es par o impar, colocaremos un cero o un uno en la columna de la derecha. Si es impar, le restaremos uno y seguiremos dividiendo por dos, hasta llegar a 1. Después sólo nosqueda tomar el último resultado de la columna izquierda (que siempre será 1) y todos los de la columna de la derecha y ordenar los dígitos de abajo a arriba. Y luego se haría un cuadro con las potencias con el resultado.

Ejemplo:
100|0
50|0
25|1 --> 1, 25-1=24 y seguimos dividiendo por 2
12|0
6|0
3|1
1|1 --> 100 [pic] 1100100
Existe un último método denominado dedistribución. Consiste en distribuir los unos necesarios entre las potencias sucesivas de 2 de modo que su suma resulte ser el número decimal a convertir. Sea por ejemplo el número 151, para el que se necesitarán las 8 primeras potencias de 2, ya que la siguiente, 28=256, es superior al número a convertir. Se comienza poniendo un 1 en 128, por lo que aún faltarán 23, 151-128=23, para llegar al 151.Este valor se conseguirá distribuyendo unos entre las potencias cuya suma den el resultado buscado y poniendo ceros en el resto. En el ejemplo resultan ser las potencias 4, 2, 1 y 0, esto es, 16, 4, 2 y 1, respectivamente.
Ejemplo:
20= 1|1
21= 2|1
22= 4|1
23= 8|0
24= 16|1
25= 32|0
26= 64|0
27= 128|1 128+16+4+2+1=151 [pic] 10010111

Binario a octal...
tracking img