Estadistica aplicada

Solo disponible en BuenasTareas
  • Páginas : 9 (2139 palabras )
  • Descarga(s) : 0
  • Publicado : 15 de agosto de 2012
Leer documento completo
Vista previa del texto
3.1 CONCEPTO DE HIPOTESIS ESTADISTICA Y PRUEBA DE SIGNIFICACION

Una hipótesis estadística es una suposición hecha con respecto a la función de distribución de una variable aleatoria.
Para establecer la verdad o falsedad de una hipótesis estadística con certeza total, será necesario examinar toda la población. En la mayoría de las situaciones reales no es posible o practico efectuar esteexamen, y el camino mas aconsejable es tomar una muestra aleatoria de la población y en base a ella, decidir si la hipótesis es verdadera o falsa.
En la prueba de una hipótesis estadística, es costumbre declarar la hipótesis como verdadera si la probabilidad calculada excede el valor tabular llamado el nivel de significación y se declara falsa si la probabilidad calculada es menor que el valortabular.
La prueba a realizar dependerá del tamaño de las muestras, de la homogeneidad de las varianzas y de la dependencia o no de las variables.
Si las muestras a probar involucran a más de 30 observaciones, se aplicará la prueba de Z, si las muestras a evaluar involucran un número de observaciones menor o igual que 30 se emplea la prueba de t de student. La fórmula de cálculo depende de si lasvarianzas son homogéneas o heterogéneas, si el número de observaciones es igual o diferente, o si son variables dependientes.

3.2 PROCESO POR ETAPAS PARA EL PLANTEAMIENTO DE UNA PRUEBA DE HIPOTESIS
Al realizar pruebas de hipótesis, se parte de un valor supuesto (hipotético) en parámetro poblacional. Después de recolectar unamuestra aleatoria, se compara la estadística muestral, así como la media(x), con el parámetro hipotético, se compara con una supuesta media poblacional (). Después se acepta o se rechaza el valor hipotético, según proceda. Se rechaza el valor hipotético sólo si el resultado muestral resulta muy poco probable cuando la hipótesis es cierta.
Etapa 1.- Planear la hipótesis nula y la hipótesis alternativa. La hipótesis nula (H0) es el valor hipotético del parámetro que secompra con el resultado muestral resulta muy poco probable cuando la hipótesis es cierta.
Etapa 2.- Especificar el nivel de significancia que se va a utilizar. El nivel de significancia del 5%, entonces se rechaza la hipótesis nula solamente si el resultado muestral es tan diferente del valor hipotético que una diferencia de esa magnitud o mayor, pudiera ocurrir aleatoria mente conunaprobabilidad de 1.05 o menos.
Etapa 3.- Elegir la estadística de prueba. La estadística de prueba puede ser la estadística muestral (el estimador no segado del parámetro que se prueba) o una versión transformada de esa estadística muestral. Por ejemplo, para probar el valor hipotético de una media poblacional, se toma la media de una muestra aleatoria de esa distribución normal, entonces es común que setransforme la media en un valor z el cual, a su vez, sirve como estadística de prueba.
Etapa 4.- Establecer el valor o valores críticos de la estadística de prueba. Habiendo especificado la hipótesis nula, el nivel de significancia y la estadística de prueba que se van a utilizar, se produce a establecer el o los valores críticos de estadística de prueba. Puede haber uno o más de esos valores,dependiendo de si se va a realizar una prueba de uno o dos extremos.
Etapa 5.- Determinar el valor real de la estadística de prueba. Por ejemplo, al probar un valor hipotético de la media poblacional, se toma una muestra aleatoria y se determina el valor de la media muestral. Si el valor crítico que se establece es un valor de z, entonces se transforma la media muestral en un valor de z.
Etapa6.- Tomar la decisión. Se compara el valor observado de la estadística muestral con el valor (o valores) críticos de la estadística de prueba. Después se acepta o se rechaza la hipótesis nula. Si se rechaza ésta, se acepta la alternativa; a su vez, esta decisión tendrá efecto sobre otras decisiones de los administradores operativos, como por ejemplo, mantener o no un estándar de desempeño o cuál de...
tracking img