Estadistica

Solo disponible en BuenasTareas
  • Páginas : 6 (1298 palabras )
  • Descarga(s) : 0
  • Publicado : 22 de febrero de 2012
Leer documento completo
Vista previa del texto
ESTADISTICA Y PROBABILIDAD II PRUEBAS DE HIPOTESIS PARA UNA MUESTRA GRUPO: 654 Paso 1: Plantear la hipótesis nula Ho y la hipótesis alternativa Ha Cualquier investigación estadística implica la existencia de hipótesis o afirmaciones acerca de las poblaciones que se estudian. La hipótesis nula (Ho) se refiere siempre a un valor especificado del parámetro de población, no a una estadística demuestra. La letra H significa hipótesis y el subíndice cero no hay diferencia. Por lo general hay un "no" en la hipótesis nula que indica que "no hay cambio" Podemos rechazar o aceptar Ho. La hipótesis nula es una afirmación que no se rechaza a menos que los datos muestrales proporcionen evidencia convincente de que es falsa. El planteamiento de la hipótesis nula siempre contiene un signo de igualdadcon respecto al valor especificado del parámetro. La hipótesis alternativa (Ha) es cualquier hipótesis que difiera de la hipótesis nula. Es una afirmación que se acepta si los datos maestrales proporcionan evidencia suficiente de que la hipótesis nula es falsa. Se le conoce también como la hipótesis de investigación. El planteamiento de la hipótesis alternativa nunca contiene un signo de igualdadcon respecto al valor especificado del parámetro. Paso 2: Seleccionar el nivel de significancia. Nivel de significancia: Probabilidad de rechazar la hipótesis nula cuando es verdadera. Se le denota mediante la letra griega α, también es denominada como nivel de riesgo, este término es más adecuado ya que se corre el riesgo de rechazar la hipótesis nula, cuando en realidad es verdadera. Este nivelesta bajo el control de la persona que realiza la prueba. Si suponemos que la hipótesis planteada es verdadera, entonces, el nivel de significación indicará la probabilidad de no aceptarla, es decir, estén fuera de área de aceptación. El intervalo de confianza (1-α), indica la probabilidad de aceptar la hipótesis planteada, cuando es verdadera en la población.

La distribución de muestreo de laestadística de prueba se divide en dos regiones, una región de rechazo (conocida como región crítica) y una región de no rechazo (aceptación). Si la estadística de prueba cae dentro de la región de aceptación, no se puede rechazar la hipótesis nula. La región de rechazo puede considerarse como el conjunto de valores de la estadística de prueba que no tienen posibilidad de presentarse si lahipótesis nula es verdadera. Por otro lado, estos valores no son tan improbables de presentarse si la hipótesis nula es falsa. El valor crítico separa la región de no rechazo de la de rechazo. Tipos de errores Cualquiera sea la decisión tomada a partir de una prueba de hipótesis, ya sea de aceptación de la Ho o de la Ha, puede incurrirse en error: Un error tipo I se presenta si la hipótesis nula H esrechazada cuando es verdadera y debía ser aceptada. La probabilidad de cometer un error tipo I se denomina con la letra alfa α Un error tipo II, se denota con la letra griega β se presenta si la hipótesis nula es aceptada cuando de hecho es falsa y debía ser rechazada. En cualquiera de los dos casos se comete un error al tomar una decisión equivocada. En la siguiente tabla se muestran las decisionesque pueden tomar el investigador y las consecuencias posibles.

Para que cualquier prueba de hipótesis sea bueno, debe diseñarse de forma que minimice los errores de decisión. En la práctica un tipo de error puede tener más importancia que el otro, y así se tiene a conseguir poner una limitación al error de mayor importancia. La única forma de reducir ambos tipos de errores es incrementar eltamaño de la muestra, lo cual puede ser o no ser posible. La probabilidad de cometer un error de tipo II denotada con la letra griega beta β, depende de la diferencia entre los valores supuesto y real del parámetro de la población. Como es más fácil encontrar diferencias grandes, si la diferencia entre la estadística de muestra y el correspondiente parámetro de población es grande, la probabilidad...
tracking img