Solo disponible en BuenasTareas
• Páginas : 6 (1355 palabras )
• Descarga(s) : 0
• Publicado : 26 de agosto de 2010

Vista previa del texto

1. Pregunte a sus compañeros hombre y mujeres por su estatura y programa al que pertenece y recolecte los datos en el formato como sigue:

1.1 En forma conjunta realice un gráfico y cuadro donde resuma las estadísticas básicas de las estaturas y realice un análisis comparativo de los dos conjuntos de datos. (medias, medianas,desv.estad, coef variac, diagrama boxplot, histograma). (TIPO ENSAYO).

Two-Sample Comparison - Mujeres & Hombres
Sample 1: Mujeres
Sample 2: Hombres

Sample 1: 14 values ranging from 1,53 to 1,68
Sample 2: 14 values ranging from 1,6 to 1,84

This procedure is designed to compare two samples of data. It will calculate various statistics and graphs for each sample,and it will run several tests to determine whether there are statistically significant differences between the two samples.

Summary Statistics
| Mujeres | Hombres |
Count | 14 | 14 |
Average | 1,63 | 1,73786 |
Standard deviation | 0,0392232 | 0,0593787 |
Coeff. of variation | 2,40633% | 3,41677% |
Minimum | 1,53 | 1,6 |
Maximum | 1,68 | 1,84 |
Range | 0,15 | 0,24 |
Stnd.skewness | -1,86738 | -0,732187 |
Stnd. kurtosis | 1,6236 | 0,986541 |

This table shows summary statistics for the two samples of data. Other tabular options within this analysis can be used to test whether differences between the statistics from the two samples are statistically significant. Of particular interest here are the standardized skewness and standardized kurtosis,which can be used to determine whether the samples come from normal distributions. Values of these statistics outside the range of -2 to +2 indicate significant departures from normality, which would tend to invalidate the tests which compare the standard deviations. In this case, both standardized skewness values are within the range expected. Both standardized kurtosis values are within therange expected.

Comparison of Standard Deviations
| Mujeres | Hombres |
Standard deviation | 0,0392232 | 0,0593787 |
Variance | 0,00153846 | 0,00352582 |
Df | 13 | 13 |
Ratio of Variances = 0,436341

95,0% Confidence Intervals
Standard deviation of Mujeres: [0,028435, 0,0631903]
Standard deviation of Hombres: [0,0430468, 0,0956615]
Ratio of Variances: [0,140076,1,35922]

F-test to Compare Standard Deviations
Null hypothesis: sigma1 = sigma2
Alt. hypothesis: sigma1 NE sigma2
F = 0,436341 P-value = 0,14795
Do not reject the null hypothesis for alpha = 0,05.