Estudiante

Solo disponible en BuenasTareas
  • Páginas : 7 (1686 palabras )
  • Descarga(s) : 0
  • Publicado : 28 de agosto de 2012
Leer documento completo
Vista previa del texto
EJERCICIOS COMBINADOS DE FACTOREO / EJERCICIOS RESUELTOS




EJEMPLO 1: (Factor Común y Diferencia de Cuadrados)

2x2 - 18 =

2.(x2 - 9) =
x 3

2.(x + 3).(x - 3)


Primero se puede sacar factor común "2". Luego, en x2 - 9 se puede aplicar el 5to Caso (Diferencia de Cuadrados). En cualquier ejercicio combinado, se aconseja empezar por aplicar Factor Común si se puede.EXPLICACIÓN DEL EJEMPLO 1




EJEMPLO 2: (Factor Común y Trinomio Cuadrado Perfecto)

3x2 + 30x + 75 =

3.(x2 + 10x + 25) =
x 5
2.x.5

3.(x + 5)2


Aquí primero se puede sacar factor común "3", y luego aplicar el Tercer Caso: Trinomio Cuadrado Perfecto.

EXPLICACIÓN DEL EJEMPLO 2





EJEMPLO 3: (Factor Común y Suma o Resta dePotencias de Igual Grado)

5x3 + 40 =

5.(x3 + 8) =
x 2

5.(x + 2).(x2 - 2x + 4)


Primero se puede sacar factor común "5", y luego aplicar el Sexto Caso. El trinomio que queda luego de aplicar el Sexto Caso no se puede factorizar por ningún Caso (es un polinomio "primo").

EXPLICACIÓN DEL EJEMPLO 3




EJEMPLO 4: (Factor Común y Factor Común en Grupos)

30a4x - 15a3xz - 10a3y+ 5a2yz =

5a2.(6a2x - 3axz - 2ay + yz) =

5a2.[3ax(2a - z) + y.(-2a + z)] =

5a2.[3ax(2a - z) - y.(2a - z)] =

5a2.(2a - z).(3ax - y) =


Primero se puede sacar factor común 5a2, y luego agrupar para sacar factor común en grupos (2do Caso). Fue necesario incorporar el uso de corchetes son para no usar "paréntesis dentro de paréntesis". El tercer paso está de más si se prefiere sacarfactor común negativo.

EXPLICACIÓN DEL EJEMPLO 4




EJEMPLO 5: (Factor Común y Séptimo Caso)

2ax2 + 6ax - 20a =

2a.(x2 + 3x - 10) =

2a.(x - 2).(x + 5)


Se puede sacar factor común "2a", y luego aplicar el Séptimo Caso: Trinomio de Segundo Grado.

EXPLICACIÓN DEL EJEMPLO 5




EJEMPLO 6: (Diferencia de Cuadrados y Diferencia de Cuadrados)

x4 - 81 =
x2 9

(x2+ 9).(x2 - 9) =
x 3

(x2 + 9).(x + 3).(x - 3)


Se puede aplicar el 5to Caso: Diferencia de Cuadrados. Y luego en el resultado aparece otra "diferencia de cuadrados".
También se podía aplicar otro caso en un principio: 6to Caso (Suma o Resta de Potencias de Igual Grado). Y sería también un ejercicio combinado, porque se puede seguir con otro Caso (Ver EJEMPLO 7)EXPLICACIÓN DEL EJEMPLO 6




EJEMPLO 7: (Suma o Resta de Potencias de Igual Grado y Factor Común en Grupos)

x4 - 81 =
x 3

(x - 3).(x3 + 3x2 + 9x + 27)

(x - 3).[x2.(x + 3) + 9.(x + 3)]

(x - 3).(x + 3).(x2 + 9)


Primero se puede aplicar el Sexto Caso. Luego en el cociente se puede agrupar para sacar "factor común en grupos". Eso sucede siempre que se use el Sexto Caso parafactorizar restas de potencias pares.
Este ejercicio es igual que el EJEMPLO 6, pero aplicando otros Casos de Factoreo. Puede apreciarse que, al factorizarlos completamente, se llega al mismo resultado por dos caminos diferentes.

EXPLICACIÓN DEL EJEMPLO 7




EJEMPLO 8: (Factor Común en Grupos y Diferencia de Cuadrados)

x3 + x2 - 9x - 9 =

x2.(x + 1) + 9.(-x - 1) =

x2.(x + 1) -9.(x + 1) =

(x + 1).(x2 - 9) =

(x + 1).(x + 3).(x - 3)


Primero se puede agrupar para aplicar el 2ndo Caso. Luego, hay una diferencia de cuadrados. El tercer paso está de más si se prefiere sacar factor común negativo.

EXPLICACIÓN DEL EJEMPLO 8




EJEMPLO 9: (Factor Común en Grupos y Suma o Resta de Potencias...)

x4 + ax3 + 8x + 8a =

x3.(x + a) + 8.(x + a) =

(x + a).(x3 +8) =
x 2

(x + a).(x + 2).(x2 - 2x + 4)


Primero se puede agrupar para aplicar el 2ndo Caso. Luego queda una suma de potencias impares, entonces puede aplicarse el 6to Caso. El trinomio que queda luego de aplicar el Sexto Caso no se puede factorizar por ningún Caso.

EXPLICACIÓN DEL EJEMPLO 9




EJEMPLO 10: (Trinomio Cuadrado Perfecto y Diferencia de...
tracking img