Face

Solo disponible en BuenasTareas
  • Páginas : 3 (656 palabras )
  • Descarga(s) : 0
  • Publicado : 26 de mayo de 2011
Leer documento completo
Vista previa del texto
07. ESPERANZA MATEMATICA

VALOR ESPERADO

Valor Medio. Sea X una Variable Aleatoria discreta o continua. Se denomina esperanza matemática de X o valor esperado, [pic]o bien μ, a la cantidad quese expresada como,
[pic]
respectivamente.

Ahora bien, ello es válido para transformaciones de la variable aleatoria, de forma que
[pic]
En el caso continuo y similarmente para el caso discretoPor las analogías existentes entre la definición de media aritmética y esperanza matemática, las propiedades de linealidad de la primera se trasladan a la segunda, de forma que se puede obtener,[pic]

Ejemplo. Si X es el número de puntos obtenidos al lanzar un dado de seis caras, encontremos el valor esperado de la variable aleatoria Y = X2 .
La función de probabilidad de X es f(x) = 1/6 six∈{1,2,3,4,5,6}. La función de probabilidad
de Y = X2 es entonces f(y) = 1/6 si y∈{1,4,9,16,25,36}, así E(Y) = 1/6*1 + 1/6*4 + 1/6*9 + 1/6*16 + 1/6*25 + 1/6*36 = 12*P(X=1) + 22*P(X= 2) + 32*P(X= 3)+ 42*P(X= 4) + 52*P(X= 5) + 62*P(X= 6) = ∑ X2*P(X=x)

Ejemplo. Supongamos ahora que X es una v.a. que tiene función de probabilidad f(x) = 1/6 si x∈{-2,-1,0,1,2,3}y Y = X2 . La función deprobabilidad de Y es f(y) = 2/6 si y∈{1, 4} y f(y) = 1/6 si y∈{0, 9}. Entonces E(Y) = 2/6*1 + 2/6*4 + 1/6*0 + 1/6*9. Esta ecuación puede escribirse de la siguiente manera: E(Y) = 2/6*1 + 2/6∗4 + 1/6*0 + 1/6*9 =1*P(Y=1) + 4*P(Y=4) + 0*P(Y=0) + 9*P(Y=1) = 12*P(X=1 ó X=-1) + 22*P(X=2 ó X=-2) + 02*P(X=0) + 32*P(X=3) = ∑ X2*P(X=x)

A través de estos ejemplos vemos que no es necesario calcular la función deprobabilidad de Y, sólo tenemos que usar la función de probabilidad de X y los valores obtenidos al aplicar la
función Y = g(X) = X2 . Esto es cierto aún en el caso en que la función no es uno-uno.LA VARIANZA

La varianza la denotamos mediante V(X) o VAR(X) o σ2, y se calcula como,
[pic]

Obsérvese que del mismo modo en que se demuestra la relación se comprueba que
V(X)=E(X2)-(E(X))2...
tracking img