Fsfsfsfsf

Solo disponible en BuenasTareas
  • Páginas : 5 (1205 palabras )
  • Descarga(s) : 0
  • Publicado : 5 de octubre de 2010
Leer documento completo
Vista previa del texto
Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Profesor: Tito González. San Cristóbal, Jueves 15 de Octubre del 2009.

EJERCICIOS RESUELTOS DE TRANSFORMADA INVERSA DE LAPLACE

INTRODUCCION. A continuación, se desarrolla la solución de tres problemas simples pero característicos desde el punto de vista operativo de laTransformada Inversa de Laplace con el objeto de establecer las tres técnicas básicas para la aplicación de esta clase de transformación, que se desprenden de la necesaria descomposición en fracciones parciales, sin olvidar por parte del estudiante que hay problemas donde puede ser imprescindible aplicarlas todas para poder llegar a la solución final. Por otra parte, cada uno de los ejercicios seacompaña de sus respectivas gráficas tanto en el dominio de la frecuencia compleja “S” o mapa de polos y ceros, como en el dominio del tiempo o respuesta del sistema, para mostrar la relación que hay entre la ubicación de los polos y la forma de la respuesta en tiempo Estos gráficos, se realizaron por medio de scripts en Matlab versión 5.3, los cuales están a disposición del publico en otroapartado, para que el interesado en el área experimente y modifique los parámetros que se encuentran identificados para tal fin al inicio del script. Cada ejercicio se encuentra identificado en su inicio con un nombre código como: TILE01, el cual significa: Transformada Inversa de Laplace Ejercicio 01, de manera tal de no perder el enlace entre el ejercicio resuelto y la codificación en Matlab.UNET, Tito González, tito@unet.edu.ve, 15 Oct 2009, Ejercicios Resueltos de Transformada Inversa de Laplace.

1 / 10

Ejercicio: TILE01 Obtenga la Transformada Inversa de Laplace, de tablas y propiedades.

L {F ( s)} =
-1

f ( t ) , para la siguiente función haciendo uso

F ( s) =

( S + 2) ( S + 3)( S + 1)( S + 5)
⎧ ⎫ Descomposición ( S + 2) Fracciones ⎨ ( S + 3)( S + 1)( S + 5) ⎬Parciales ⎩ ⎭ ⎧ k1 k2 k3 ⎫ par 7 −1 + + a = 3 b= 1 c = 5 ⎨ ( S + 3) ( S + 1) ( S + 5) ⎬ ⎩ ⎭
−1 − 3t 1

Solución:

L {F ( s)} = L
−1

L {F ( s)} = L
−1 −1

L {F ( s)} = f (t ) = k e

+ k 2 e − t + k 3e − 5 t

forma de la respuesta

determinacón de los coeficientes ⎡ ⎤ ⎡ ( S + 2) ⎤ ⎡ (− 3 + 2) ⎤ ( S + 2) k1 = ⎢( S + 3) ⋅ =⎢ =⎢ ( S + 3)( S + 1)( S + 5) ⎥ S = − 3 ⎣ ( S + 1)( S + 5) ⎥ S =− 3 ⎣ (− 3 + 1)(− 3 + 5) ⎥ ⎣ ⎦ ⎦ ⎦ ⎡ ( − 1) ⎤ = k1 = ⎢ (− 2)(2) ⎥ ⎣ ⎦ ⎡ −1⎤ 1 ⎢ − 4 ⎥ = 4 = 0.25 = k1 ⎣ ⎦

⎡ ⎡ ( S + 2) ⎤ ⎡ ⎤ ( S + 2) ( − 1 + 2) ⎤ =⎢ =⎢ k 2 = ⎢( S + 1) ⋅ ⎥ ⎥ ( S + 3)( S + 1)( S + 5) ⎦ S = − 1 ⎣ ( S + 3)( S + 5) ⎦ S = − 1 ⎣ (− 1 + 3)(− 1 + 5) ⎥ ⎦ ⎣ ⎡ (1) ⎤ ⎡ 1 ⎤ k2 = ⎢ . ⎥ = ⎢ ⎥ = 18 = 0125 = k 2 (2)(4) ⎦ ⎣ 8 ⎦ ⎣ ⎡ ⎤ ⎡ ( S + 2) ⎤ ⎡ ( − 5 + 2) ⎤ ( S + 2) k3 = ⎢( S + 5) ⋅ =⎢ =⎢ ( S+ 3)( S + 1)( S + 5) ⎥ S = − 5 ⎣ ( S + 3)( S + 1) ⎥ S = − 5 ⎣ (− 5 + 3)(− 5 + 1) ⎥ ⎣ ⎦ ⎦ ⎦ ⎡ ( − 3) ⎤ ⎡ − 3 ⎤ k3 = ⎢ ⎥ = ⎢ ⎥ = − 3 8 = −0.375 = k3 ⎣ ( − 2)( − 4) ⎦ ⎣ 8 ⎦ Sustituyendo Tenemos:

L {F ( s)} = f (t ) = 1 4 e
−1

− 3t

+1

e 8

−t

−3

e 8

− 5t

UNET, Tito González, tito@unet.edu.ve, 15 Oct 2009, Ejercicios Resueltos de Transformada Inversa de Laplace.

2 / 10 UNET, Tito González, tito@unet.edu.ve, 15 Oct 2009, Ejercicios Resueltos de Transformada Inversa de Laplace.

3 / 10

UNET, Tito González, tito@unet.edu.ve, 15 Oct 2009, Ejercicios Resueltos de Transformada Inversa de Laplace.

4 / 10

Ejercicio: TILE02 Obtenga la Transformada Inversa de Laplace, de tablas y propiedades.
G ( s) = 6 S ( S + 4)
3

L {F ( s)} =
-1

f ( t ) , parala siguiente función haciendo uso

Solución:

L {G( s)} = L
−1

L {G( s)} = L
−1 −1

⎧ ⎫ Descomposición 6 ⎨ 3 ⎬ Fracciones S ( S + 4) ⎭ Parciales ⎩ ⎧ A2 A3 k1 ⎫ par 6 − 1 A1 + ⎨ 3+ 2 + ⎬ par 7 S S S ( S + 4) ⎭ ⎩
−1 2 1

L {G( s)} = g(t ) = A t
A1 =

+ A2 t + A3u(t ) + k1e − 4 t

forma de la respuesta

detreminación de los coeficientes ⎤ ⎡ 6 ⎤ d 1− 1 ⎡ 3 1 6 3 S ⋅ 3 . ⎥ =...
tracking img