Funcion cuadratica

Solo disponible en BuenasTareas
  • Páginas : 15 (3611 palabras )
  • Descarga(s) : 4
  • Publicado : 17 de mayo de 2010
Leer documento completo
Vista previa del texto
Definición
Una función cuadrática es aquella que puede escribirse de la forma:
f(x) = ax2 + bx + c |
donde a, b y c son números reales cualesquiera y a distinto de cero.
Si representamos "todos" los puntos (x,f(x)) de una función cuadrática, obtenemos siempre una curva llamada parábola.
Como ejemplo, ahí tienes la representación gráfica de dos funciones cuadráticas muy sencillas:
*f(x) = x2
* f(x) = -x2
Obtención del vértice de una parábola
El vértice de una parábola está situado en el eje de ésta y, por tanto, su abscisa será el punto medio de las abscisas de dos puntos de la parábola que sean simétricos.
Como toda función cuadrática pasa por el punto (0,c) y el simétrico de éste tiene de abscisa x = -b/a, la del vértice será Xv = -b/2a. La ordenada Yv se calculasustituyendo el valor de Xv en la ecuación de la función.

Intersección de la parábola con los ejes
* Intersección con el eje OY: Como todos los puntos de este eje tienen la abscisa x = 0, el punto de corte de la parábola con el eje OY tendrá de coordenadas (0,c)
* Intersección con el eje OX: Como todos los puntos del eje OX tienen la ordenada y = 0, para ver estos puntos de corte seresuelve la ecuación de segundo grado ax2 + bx + c = 0.
Dependiendo del valor del discriminante (D) de la ecuación, se pueden presentar tres situaciones distintas:
i. Si D > 0, la ecuación tiene dos soluciones reales y distintas y la parábola cortará al eje OX en dos puntos.
ii. Si D = 0, la ecuación tiene una solución real y, por tanto, la parábola cortará al eje OX en un punto(que será el vértice).
iii. Si D < 0, la ecuación no tiene soluciones reales yla parábola no cortará al eje OX.
Cálculo de puntos de la parábola
Podemos hallar los puntos de la parábola que necesitemos sin más que sustituir, en la ecuación de la función cuadrática, la variable x por aquellos valores que deseemos.
* -------------------------------------------------
Principio delformulario
Parábola:
y = x2 + x + |
|
x | y |
x1 = | y1 = |
x2 = | y2 = |
x3 = | y3 = |
* Final del formulario

Resumen
Toda función cuadrática f(x) = ax2 + bx + c, representa una parábola tal que:
* Su forma depende exclusivamente del coeficiente a de x2.
* Los coeficientes b y c trasladan la parábola a izquierda, derecha, arriba o abajo.
* Si a > 0, lasramas van hacia arriba y si a < 0, hacia abajo.
* Cuanto más grande sea el valor absoluto de a, más cerrada es la parábola.
* Existe un único punto de corte con el eje OY, que es el (0,c)
* Los cortes con el eje OX se obtienen resolviendo la ecuación ax2 + bx + c=0, pudiendo ocurrir que lo corte en dos puntos, en uno o en ninguno.
* La primera coordenada del vértice es Xv =-b/2a.
PARÁBOLAy = x2+ x+ |
| |
| |
|
Punto P de corte | Punto Q de corte |
|
x1 = | y1 = |
x2 = | y2 = |
x3 = | y3 = |
FUNCIONES CUADRÁTICAS
 
ACTIVIDADES DE INTRODUCCIÓN
1. Si en un cuadrado aumentamos en 6 unidades dos lados paralelos obtenemos un rectángulo. Calcula el área del rectángulo en función del lado x del cuadrado.
2. Una mujer tiene unestanque rectangular de 5x3 metros. Quiere hacer un camino alrededor del estanque como muestra el siguiente dibujo:. La anchura del camino ha de ser constante en todo el contorno.
Llama x a la anchura constante del camino.¿Cuál será el área A del camino?
Calcula los valores de A cuando x es 0, 1, 2, 3 y 4. Escribe los valores en una tabla.
Dibuja unos ejes y dibuja los puntos (x, A).
Si el área delcamino ha de ser de 30 m2 , utiliza la gráfica y averigua el ancho x del camino.
¿Para qué valor de x es A = 100?
Actividad resuelta
3. El director de un teatro estima que si cobra 30 €  por localidad, podría contar con 500 espectadores y que cada bajada de 1 € le supondría 100 personas más. Calcula las ganancias obtenidas en función del número de bajadas del precio.
Observa la tabla:...
tracking img