Historia de las matematicas

Solo disponible en BuenasTareas
  • Páginas : 9 (2206 palabras )
  • Descarga(s) : 0
  • Publicado : 3 de marzo de 2010
Leer documento completo
Vista previa del texto
HISTORIA DE LAS MATEMATICAS
Las matemáticas son el estudio de las relaciones entre cantidades, magnitudes y propiedades, y de las operaciones lógicas utilizadas para deducir cantidades, magnitudes y propiedades desconocidas.
Las matemáticas son tan antiguas como la propia humanidad.
Las matemáticas avanzadas y organizadas fueron desarrolladas en el tercer milenio a.C., en Babilonia y Egipto, lascuales estaban dominadas por la aritmética, con cierto interés en medidas y cálculos geométricos.
Los primeros libros egipcios, muestran un sistema de numeración decimal con símbolos diferentes para las potencias de 10, similar a los números romanos. Los números se representaban escribiendo 1 tantas veces como unidades tenía la cifra dada, el 10, tantas veces como decenas tenía, y asísucesivamente. Para sumar, se sumaban en secciones diferentes las unidades, las decenas, las centenas... de cada número para obtener el resultado correcto. La multiplicación estaba basada en duplicaciones sucesivas y la división era el proceso inverso.
Los egipcios utilizaban sumas de fracciones unidad (ð), junto con la fracción, para expresar todas las fracciones. En geometría encontraron reglas paracalcular el área de triángulos, rectángulos y trapecios, y el volumen de figuras como ortoedros, cilindros y, pirámides. Para calcular el área de un círculo, utilizaron un cuadrado de lado ð del diámetro del círculo, valor muy cercano al que se obtiene utilizando pi 3.1416.
Los babilonios tallaron tablillas con varias cuñas (cuneiforme); una cuña sencilla representaba al 1 y una en forma de flecharepresentaba al 10. Los números menores que 59 estaban formados por estos símbolos utilizando un proceso aditivo, como lo hacían los egipcios y los romanos. Pero el 60, era representado con el símbolo del 1, y a partir de ahí, el valor de un símbolo venía dado por su posición en la cifra completa. Esta manera de expresar números, fue ampliado a la representación de fracciones. Posteriormente estesistema fue denominado sexagesimal.
Tiempo más tarde, los babilonios desarrollaron matemáticas más sofisticadas, lo cual les permitió encontrar las raíces positivas de cualquier ecuación de segundo grado. También lograron encontrar las raíces de algunas ecuaciones de tercer grado, y resolvieron problemas más complicados utilizando el teorema de Pitágoras. Fueron capaces de recopilar gran cantidad detablas, como las de multiplicar, de dividir, de cuadrados y hasta las de interés compuesto. Calcularon la suma de progresiones aritméticas y de algunas geométricas, pero también de sucesiones de cuadrados. Aunque también obtuvieron una buena aproximación de la raíz cuadrada.
Uno de los grupos más innovadores en la historia de las matemáticas fueron los egipcios, quienes inventaron las matemáticasabstractas basadas en definiciones, axiomas y demostraciones. Los descubridores egipcios más importantes fueron Tales de Mileto y Pitágoras de Samos, quien explicó la importancia del estudio de los números para poder entender el mundo.
Uno de los principales interesados en la geometría fue Demócrito, quien encontró la fórmula para calcular el volumen de una pirámide, aunque Hipócrates, descubrióque el área de figuras geométricas en forma de media luna limitadas por arcos circulares son iguales a las de ciertos triángulos, lo cual está relacionado con el problema de la cuadratura del círculo, que consiste en construir un cuadrado de área igual a un círculo. En ese tiempo también fue resuelto mediante diversos métodos y utilizando instrumentos diversos, entre los que se encuentran el compásen incluso la regla el problema de la trisección de un ángulo y la duplicación del cubo que consiste en construir un cubo cuyo volumen es el cuadrado de el de un cubo dado).
A finales del siglo V a.C., descubrieron que no existe una unidad de longitud capaz de medir el lado y la diagonal de un cuadrado, puesto que una de las dos cantidades es inconmensurable, es decir, no existen dos números...
tracking img