Induccion matematica

Solo disponible en BuenasTareas
  • Páginas : 3 (577 palabras )
  • Descarga(s) : 4
  • Publicado : 16 de febrero de 2010
Leer documento completo
Vista previa del texto
El principio de Inducción Matemática es un método que se utiliza para demostrar propiedades, formulas, validarlas y probar que son verdaderas.
Es un método simple que consta de tres pasosfundamentales en los cuales se debe demostrar la propiedad reemplazando su incógnita por 1, luego por k y finalmente por k+1.
Los pasos para desarrollar la Inducción Matemática se detallan en el contenido delpresente trabajo de investigación.
INDUCCION MATEMATICA
Sea P(n) una proposición que depende de la variable n, con n perteneciente a los Naturales. Si:
• 1 satisface a P y,
• k pertenece a losNaturales, k satisface P! (k+1) satisface P,
entonces todos los números naturales satisfacen P.
Usaremos el Axioma de Inducción Matemática para demostrar la validez, en los Números Naturales, deciertas proposiciones P que depende de una variable n, con n perteneciente a los Naturales.
Procederemos de la siguiente manera:
• Verificaremos la proposición para el numero 1.
• Supondremos que laproposición es verdadera para un numero natural cualquiera k. (Hipótesis de inducción).
• Demostraremos la proposición para el numero natural (k+1).
Así, gracias al axioma de inducción Matemática,podemos concluir que la proposición la satisfacen todos los números naturales.

Ejemplo 1:
Demostraremos que:
1+2+3+............+n = n(n+1), " n perteneciente a los naturales (*)
2
• 1=1(1+1). Por lo tanto 1 satisface la proposición (*)
2
• Supongamos valida la proposición (*) para k perteneciente a los Naturales, es decir supongamos que:
1+2+3+.........+k = k(k+1). (Hipótesis deinducción).
2
• Demostremos que k - 1 también satisface la proposición (*), es decir, demostremos que:
1+2+3+.........+k+(k+1) = (k+1)(k+2).
2
Demostración:
(1+2+3+.......+k)+(k+1) = k(k+1) +(k+1)
2
= k(k+1)+2(k+1)
2
= (k+1)(k+2)
2
Luego la proposición (*) es verdadera "n perteneciente a los naturales.
En resumen, primero demuestras reemplazando el n por un 1, luego demuestras...
tracking img