Introduccion a la cristalografia

Solo disponible en BuenasTareas
  • Páginas : 76 (18985 palabras )
  • Descarga(s) : 0
  • Publicado : 23 de octubre de 2010
Leer documento completo
Vista previa del texto
Elementos de simetría
Las celdas fundamentales de un cristal presentan elementos de simetría, que son:
* Eje de simetría: es una línea imaginaria que pasa a través del cristal, alrededor de la cual, al realizar éste un giro completo, repite dos o más veces el mismo aspecto. Los ejes pueden ser: monarios, si giran el motivo una vez (360º); binarios, si lo giran dos veces (180º); ternarios, silo giran tres veces (120º); cuaternarios, si lo giran cuatro veces (90º); o senarios, si giran el motivo seis veces (60º).
* Plano de simetría: es un plano imaginario que divide el cristal en dos mitades simétricas especulares, como el reflejo en un espejo, dentro de la celda. Puede haber múltiples planos de simetría. Se representa con la letra m.
* Centro de simetría: es un puntodentro de la celda que, al unirlo con cualquiera de la superficie, repite al otro lado del centro y a la misma distancia un punto similar.
* Sistemas cristalinos: todas la redes critalinas, al igual que los cristales, que son una consecuencia de las redes, presentan elementos de simetría.Si se clasifican los 230 grupos espaciales segun los elementos de simetria que poseen, se obtienen 32 clases desimetria (cada una de las cuales reune todas las formas cristalinas que poseen los mismos elementos de simetria)es decir, regular o cubico, tetragonal, hexgonal, romboedrico rombico, monoclínico y triclínico.
* Hábito cristalino: es el aspecto que presenta un cristal como consecuencia del diferente desarrollo de sus caras.
* Hábito acicular: cristales con gran desarrollo de carasverticales. Tienen aspecto de agujas.
* Hábito honojoso: cristales con aspecto de hojas por el gran desarrollo de las caras horizontales.
Formas cristalográficas
Es el conjunto de caras iguales que están relacionadas por su simetría:
* Una sola cara: pedion.
* Dos caras:
* Pinacoide: iguales y paralelas relacionadas por un plano o eje binario.
* Domo: no paralelas que serelacionan por un plano.
* Esfenoide: no paralelas relacionadas por un eje binario.
* Prismas, pirámides, bipirámides, trapezoedros, escalenoedros.
* Clases cristalinas.
Las posibles agrupaciones de los elementos de simetría son treinta y dos y a éstos corresponden otras tantas clases cristalinas, más una a la que no corresponde ninguno de tales elementos de simetría. Todoslos cristales se hallan comprendidos en estas treinta y dos clases que, a su vez, se reagrupan en siete sistemas (cúbico o manométrico, tetragonal, hexagonal, trigonal o romboédrico, rómbico, monoclínico y triclínico).
Propiedades
* Sistema triclínico (a≠b≠c α≠β≠γ≠90º): no posee ninguna simetría mínima.
* Sistema monoclínico (a≠b≠c α=γ=90º≠β>90º): Presenta como simetría mínima un eje derotación binario o un eje de inversión binario (=plano de simetría)
* Sistema rómbico (a≠b≠c α=β=γ=90º): Como mínimo posee tres ejes binarios perpendiculares entre sí.
* Sistema tetragonal (a=b≠c α=β=γ=90º): posee como característica fundamental un eje de rotación cuaternario o un eje de inversión cuaternario.
* Sistema hexagonal (a=b≠c α=β=90º, γ=120º): su característica fundamentales la presencia de un eje de rotación senario o un eje de inversión senario (eje ternario + plano de simetría perpendicular). Para mayor precisión, generalmente se introduce un cuarto eje i, coplanario con a y b, que forma un ángulo de 120º con cada uno de ellos, así la cruz axial será (a=b=i≠c α=β=90º, γ=120º).
* Índices de Miller hexagonales: como se trabaja con un cuarto índice, que sesitúa en el plano a1 a2 y a 120º de cada uno de estos ejes, los planos hexagonales se van a representar por cuatro índices (hkil). El valor de i se determina como h+k.
* Sistema romboédrico o trigonal (a=b=c α=β=γ≠90º): su característica común es la presencia de un eje de rotación ternario o un eje de inversión ternario (eje ternario + centro de simetría).
* Sistema cúbico (a=b=c...
tracking img