Investigacion

Solo disponible en BuenasTareas
  • Páginas : 9 (2047 palabras )
  • Descarga(s) : 0
  • Publicado : 8 de mayo de 2011
Leer documento completo
Vista previa del texto
Raíz cuadradaDe Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

Representación de "raíz cuadrada de X".En las ciencias matemáticas, se llama raíz cuadrada de un número (a veces abreviada como raíz a secas) a aquel otro que siendo mayor o igual que cero, elevado al cuadrado, es igual al primero.

La raíz cuadrada de x se expresa:

o bien:

es porque:

Por ejemplo:ya que

Las raíces cuadradas fueron uno de los primeros desarrollos de las matemáticas, siendo particularmente investigadas durante el periodo pitagórico, cuando el descubrimiento de que la raíz cuadrada de 2 era irracional (inconmensurable) o no expresable como cociente alguno, lo que supuso un hito en la matemática de la época.

Posteriormente se fue ampliando la definición de raíz cuadrada.Para los números reales negativos, la generalización de la función raíz cuadrada de éstos da lugar al concepto de los números imaginarios y al cuerpo de los números complejos, algo necesario para que cualquier polinomio tenga todas sus raíces (teorema fundamental del álgebra). La diagonalización de matrices también permite el cálculo rápido de la raíz de una matriz.

Inicialmente mostraron suutilidad para la resolución de problemas trigonométricos y geométricos, como la diagonal de un cuadrado o el teorema de Pitágoras. Posteriormente fueron ganando utilidad para operar con polinomios y resolver ecuaciones de segundo grado o superior, siendo una de las herramientas matemáticas más elementales hoy en día.HistoriaLas raíces cuadradas son resultado de plantear problemas geométricos comola longitud de la diagonal de un cuadrado y surgieron ya en la antigüedad. El Papiro de Ajmeed datado en 1650 a. C., que copia textos más antiguos, muestra cómo los egipcios extraían raíces cuadradas.[1] En la antigua India, el conocimiento de aspectos teóricos y aplicados del cuadrado y la raíz cuadrada fue al menos tan antiguo como los Sulba Sutras, fechados alrededor del 800-500 a. C.(posiblemente mucho antes). Un método para encontrar muy buenas aproximaciones a las raíces cuadradas de 2 y 3 es dado en el Baudhayana Sulba Sutra.[2] Aryabhata en su tratado Aryabhatiya (sección 2.4), dio un método para encontrar la raíz cuadrada de números con varios dígitos.

David Eugene Smith, en History of Mathematics, dice acerca de la situación existente:

"En Europa esos métodos (paraencontrar el cuadrado y la raíz cuadrada) no aparecieron antes de Cataneo (1546). Él dio el método de Aryabhata para determinar la raíz cuadrada".

David Eugene Smith[3]
El símbolo de la raíz cuadrada fue introducido en 1525 por el matemático Christoph Rudolff para representar esta operación[4] [5] que aparece en su libro Coss, siendo el primer tratado de álgebra escrito en alemán vulgar. El signo noes más que una forma estilizada de la letra r minúscula para hacerla más elegante, alargándola con un trazo horizontal, hasta adoptar el aspecto actual, que representa la palabra latina radix, que significa raíz. También se conjetura que pudiese haber surgido de la evolución del punto que en ocasiones se usaba anteriormente para representarlo, donde posteriormente se le habría añadido un trazooblicuo en la dirección del radicando.

Tiempo atrás, varios matemáticos vieron la necesidad de idear números que representasen la raíz cuadrada de números negativos para poder resolver todas las ecuaciones de segundo grado, pero no será hasta 1777 cuando Euler simbolice la raíz cuadrada de -1 con la letra i, dando así cabida al desarrollo de los números complejos.

[editar] Irracionalidad de lasraíces cuadradasLas raíces cuadradas de los números enteros que no son cuadrados perfectos son siempre números irracionales, que son números no expresables como el cociente de dos números enteros. Es decir, la raíz cuadrada de un número entero siempre será entero o irracional.

Cualquier número entero puede ser expresado como el producto de una serie de factores primos elevados a diversos...
tracking img