Jjojo

Solo disponible en BuenasTareas
  • Páginas : 13 (3098 palabras )
  • Descarga(s) : 0
  • Publicado : 16 de marzo de 2011
Leer documento completo
Vista previa del texto
-------------------------------------------------
En matemáticas, una matriz es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Las matrices se utilizan para describir sistemas de ecuaciones lineales, realizar un seguimiento de los coeficientes de una aplicación lineal y registrar los datos que dependen de varios parámetros. Lasmatrices se describen en el campo de la teoría de matrices. Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal.
El objeto con que se representan las conexiones en la anterior página es una matriz. En general, una matriz es un conjunto ordenado en una estructura de filas y columnas. Los elementos de este conjunto puedenser objetos matemáticos de muy variados tipos, aunque de forma particular, trabajaremos exclusivamente con matrices formadas por números reales.
Normalmente las matrices son designadas por letras mayúsculas.
Los elementos de una matriz se identifican por la fila y la columna que ocupan. Así, designaremos por a32 el elemento que está situado en la tercera fila y segunda columna de la matriz A.El número de filas y columnas que tiene una matriz se llama dimensión de la matriz.
Dos matrices son iguales si son de igual dimensión y coincide el valor de los elementos que ocupan la misma posición en ambas.
-------------------------------------------------

-------------------------------------------------
Definiciones y notaciones
Una matriz es una tabla cuadrada o rectangular de datos(llamados elementos o entradas de la matriz) ordenados en filas y columnas, donde una fila es cada una de las líneas horizontales de la matriz y una columna es cada una de las líneas verticales. A una matriz con m filas y n columnas se le denomina matriz m-por-n (escrito m×n), y a m y n dimensiones de la matriz. Las dimensiones de una matriz siempre se dan con el número de filas primero y elnúmero de columnas después. Comúnmente se dice que una matriz m-por-n tiene un orden de m × n ("orden" tiene el significado de tamaño). Dos matrices se dice que son iguales si son del mismo orden y tienen los mismos elementos.
Al elemento de una matriz que se encuentra en la fila i-ésima y la columna j-ésima se le llama elemento i,j o elemento (i,j)-iésimo de la matriz. Se vuelve a poner primero lasfilas y después las columnas.
Casi siempre, se denotan a las matrices con letras mayúsculas mientras que se utilizan las correspondientes letras en minúsculas para denotar a los elementos de las mismas. Por ejemplo, al elemento de una matriz A que se encuentra en la fila i-ésima y la columna j-ésima se le denota como ai,j o a[i,j]. Notaciones alternativas son A[i,j] o Ai,j. Además de utilizarletras mayúsculas para representar matrices, numerosos autores representan a las matrices con fuentes en negrita para distinguirlas de otros tipos de variables. Así A es una matriz, mientras que A es un escalar.
Normalmente se escribe  para definir una matriz A m × n con cada entrada en la matriz A[i,j] llamada aij para todo 1 ≤ i ≤ m y 1 ≤ j ≤ n. Sin embargo, la convención del inicio de losíndices i y j en 1 no es universal: algunos lenguajes de programación comienzan en cero, en cuál caso se tiene 0 ≤ i ≤ m− 1 y 0 ≤ j ≤ n − 1.
Una matriz con una sola columna o una sola fila se denomina a menudo vector, y se interpreta como un elemento del espacio euclídeo. Una matriz 1 × n (una fila y n columnas) se denomina vector fila, y una matriz m × 1 (una columna y m filas) se denomina vector columna.-------------------------------------------------
[editar]Ejemplo
Dada la matriz:

que es una matriz 4x3. El elemento  o  es el 7.
La matriz

es una matriz 1×9, o un vector fila con 9 elementos.
* uma y diferencia de matrices

* Producto por un escalar por una matriz

Producto de matrices
Mm x n x Mn x p = M m x p

Matriz inversa
A · A-1 = A-1 · A = I

(A · B)-1 =...
tracking img