La distribucion normal

Solo disponible en BuenasTareas
  • Páginas : 9 (2027 palabras )
  • Descarga(s) : 0
  • Publicado : 12 de diciembre de 2011
Leer documento completo
Vista previa del texto
La Distribución Normal

La distribución normal N (m, s) es un modelo matemático que rige muchos fenómenos. La experiencia demuestra que las distribuciones de la mayoría de las muestras tomadas en el campo de la industria se aproximan a la distribución normal si el tamaño de la muestra es grande. Esta distribución queda definida por dos parámetros: la media m y la desviación típica s. Sepresenta mediante una curva simétrica conocida como campana de Gauss. Esta distribución nos da la probabilidad de que al elegir un valor, éste tenga una medida contenida en unos intervalos definidos. Esto permitirá predecir de forma aproximada, el comportamiento futuro de un proceso, conociendo los datos del presente.



La desviación típica es grande, el intervalo de incertidumbre de lamedida es grande, la precisión es débil
La desviación típica es pequeña, el intervalo de incertidumbre de la medida es pequeña, la precisión es grande
Tienen especial interés los siguientes intervalos:




Propiedades de la distribución normal:
La distribución normal posee ciertas propiedades importantes que conviene destacar:
1. Tiene una única moda, que coincide con su media y sumediana.
2. La curva normal es asintótica al eje de abscisas. Por ello, cualquier valor entre y es teóricamente posible. El área total bajo la curva es, por tanto, igual a 1.
3. Es simétrica con respecto a su media . Según esto, para este tipo de variables existe una probabilidad de un 50% de observar un dato mayor que la media, y un 50% de observar un dato menor.
4. La distancia entre lalínea trazada en la media y el punto de inflexión de la curva es igual a una desviación típica ( ). Cuanto mayor sea , más aplanada será la curva de la densidad.
5. El área bajo la curva comprendida entre los valores situados aproximadamente a dos desviaciones estándar de la media es igual a 0.95. En concreto, existe un 95% de posibilidades de observar un valor comprendido en el intervalo .
6.La forma de la campana de Gauss depende de los parámetros y . La media indica la posición de la campana, de modo que para diferentes valores de la gráfica es desplazada a lo largo del eje horizontal. Por otra parte, la desviación estándar determina el grado de apuntamiento de la curva. Cuanto mayor sea el valor de , más se dispersarán los datos en torno a la media y la curva será más plana. Unvalor pequeño de este parámetro indica, por tanto, una gran probabilidad de obtener datos cercanos al valor medio de la distribución.
Como se deduce de este último apartado, no existe una única distribución normal, sino una familia de distribuciones con una forma común, diferenciadas por los valores de su media y su varianza. De entre todas ellas, la más utilizada es la distribución normalestándar, que corresponde a una distribución de media 0 y varianza 1. Así, la expresión que define su densidad se puede obtener de la Ecuación 1, resultando:

Es importante conocer que, a partir de cualquier variable X que siga una distribución , se puede obtener otra característica Z con una distribución normal estándar, sin más que efectuar la transformación:
Ecuación 2:
Esta propiedad resultaespecialmente interesante en la práctica, ya que para una distribución existen tablas publicadas (Tabla 1) a partir de las que se puede obtener de modo sencillo la probabilidad de observar un dato menor o igual a un cierto valor z, y que permitirán resolver preguntas de probabilidad acerca del comportamiento de variables de las que se sabe o se asume que siguen una distribución aproximadamentenormal.
Consideremos, por ejemplo, el siguiente problema: supongamos que se sabe que el peso de los sujetos de una determinada población sigue una distribución aproximadamente normal, con una media de 80 Kg y una desviación estándar de 10 Kg. ¿Podremos saber cuál es la probabilidad de que una persona, elegida al azar, tenga un peso superior a 100 Kg?
Denotando por X a la variable que representa...
tracking img