La integral definida

Solo disponible en BuenasTareas
  • Páginas : 2 (259 palabras )
  • Descarga(s) : 0
  • Publicado : 5 de junio de 2011
Leer documento completo
Vista previa del texto
La Integral Definida
Dada una función f(x) y un intervalo [a, b], la integral definida es igual al área limitada entre la gráfica de f(x), eleje de abscisas, y las rectas verticales x = a y x = b.

Se representa por:

∫: Es el signo de integración.
a: Límite inferior de laintegración.
b: Límite superior de la integración.
f(x): Es el integrando o función a integrar.
dx: Es diferencial de x, e indica cuál es la variablede la función que se integra.

Propiedades de la Integral Definida
1. Si k que es número real constante, y f es una función integrable enel intervalo cerrado [a,b], entonces:

2. Si f g son dos funciones integrales en [a,b] entonces f + g también es integrable en [a,b] y:3. Si f y g son dos funciones integrales en [a,b] (con a < b) y además entonces:

4. Si f es una función integrable en los intervaloscerrados [a,b], [a,c] y [c,b] con a < c < b entonces:

5. Si permutamos los límites de integración, la integral cambia de signo.6. Si los límites de integración, en una integral definida de una función escalonada, coinciden, entonces:



Regla de Barrow
Laregla de Barrow dice que la integral definida de una función continua f(x) en un intervalo cerrado [a, b] es igual a la diferencia entre losvalores que toma una función primitiva G(x) de f(x), en los extremos de dicho intervalo.

Bibliografía:
www.cidse.itcr.ac.cr
www.euroschool.lu
tracking img