Ley de los senos y ley de los cosenos

Solo disponible en BuenasTareas
  • Páginas : 4 (786 palabras )
  • Descarga(s) : 0
  • Publicado : 6 de diciembre de 2011
Leer documento completo
Vista previa del texto
Calificación: 10

Puntos: 1
1. Para mejorar la infraestructura turística en el lago de Pátzcuaro se planea la construcción de un funicular que una las islas Yunuen y Pacanda. Para calcular ladistancia que unirá los dos puntos seleccionados para su construcción, un topógrafo toma las medidas que muestra la figura superior. La distancia entre estos puntos es igual a:

a. 2.95 km.

b.3.74 km. ¡Muy bien! Como se conoce la medida de dos lados del triángulo que se forma y el ángulo entre estos lados, la ley de los cosenos es de utilidad para calcular la longitud del funicular. Alsustituir los datos que se tienen en la ley de los cosenos se obtiene que a2=(4.5)2+(5.7)2-2(4.5)(5.7)cos 41o y al despejar se tiene que la distancia que unirá los dos destinos es de 3.74 km.

c.3.91 km.

d. 4.95 km.
Correcto

Puntos: 1
2. La órbita de un satélite de comunicación pasa sobre varias estaciones repetidoras. En cierto momento en que se encuentra entre dos de ellas queestán a 100 km. de distancia una de la otra, simultáneamente se mide el ángulo de elevación de la estación A que es de 78° y el de la estación B que es de 62°. La distancia de la estación B al satéliteen ese momento es igual a

a. 90.62 km.

b. 110.78 km

c. 137.36 km.

d. 152.17 km. ¡Muy bien! Con los datos de este problema se forma un triángulo en donde se conocen dos ángulos yun lado. Por ello, para encontrar cualquiera de los lados faltantes se utiliza la ley de los senos. Primeramente debemos encontrar el tercer ángulo para lo cual se utiliza el teorema que dice que lasuma de los ángulos internos de un triángulo es igual a 180°. Entonces el tercer ángulo es 180° - (78° + 62°) = 40°. Usando la ley de los senos tenemos que x/sen78°=100/sen40°. Al despejar la variablese obtiene que la distancia entre el satélite y la estación B es de 152.17 km.

Correcto

Puntos: 1
3. Un barco guardacostas se encuentran en alta mar a 120 millas náuticas al sur de otro...
tracking img