Los benjamis

Solo disponible en BuenasTareas
  • Páginas : 3 (516 palabras )
  • Descarga(s) : 8
  • Publicado : 26 de junio de 2010
Leer documento completo
Vista previa del texto
Enunciados y respuestas final 24 febrero 2010

1. Resolver, si es posible, usando la Regla de Cramer el siguiente sistema lineal:
[pic]
El determinante de la matriz delsistema es -3.
La solución es (0, 1/3, 1/3).

2. Calcular la dimensión del subespacio generado por los vectores fila de la siguiente matriz:
[pic]

[pic] La dimensión delsubespacio generado por los tres vectores fila de la matriz es el rango de la misma, es decir, 2.

3. Hallar una base del subespacio de soluciones de:
[pic]

Las soluciones sonlos vectores de la forma: (-y,y,y). Luego, una base es [pic].

4. Escribir la ecuación cartesiana del plano que pasa por [pic] y es ortogonal a la recta de ecuaciones [pic].

La recta es X=(-1,2,0) +t(3,-3,1). Luego, el plano pedido es X.(3,-3,1) = (1,1,1).(3,-3,1), es decir, 3x-3y+z=1.

5. Sean [pic] y [pic]. Calcular [pic].

[pic]

6. Escribir la ecuaciónvectorial del plano que pasa por [pic] y es paralelo al plano [pic].

Para encontrar los vectores directores del plano dado (que servirán como vectores directores del plano buscado, ya que ambosplanos son paralelos) se determinan 3 puntos del mismo y luego se llevan al origen dos de los vectores que ellos determinan, por ejemplo:
Si x=1, z=0, resulta y=0. Luego P=(1,0,0)
Si x=0, z=0, resultay=-2. Luego Q=(0,-2,0)
Si x=1, z=1, resulta y=3. Luego R=(1,3,1)
Entonces los vectores directores son:
P-Q=(1,2,0) y P-R=(0,-3,-1). Entonces la ecuación vectorial del plano es X =(1,1,1)+u(1,2,0)+v(0,-3,-1).

7. a) Calcular la dimensión del subespacio de [pic] definido por [pic]

La dimensión del espacio de soluciones es n-r = 3-1=2.

b) Hallar una base del subespaciodel inciso a).

Las soluciones son de la forma (-y-z ,y , z), con y, z reales cualesquiera.

Si y=1, z=0, un vector de la base es (-1,1,0)
Si y=0, z=1, el otro vector de la base es (-1,0,1)....
tracking img