Mecanica de suelos

Solo disponible en BuenasTareas
  • Páginas : 14 (3438 palabras )
  • Descarga(s) : 0
  • Publicado : 15 de marzo de 2012
Leer documento completo
Vista previa del texto
Posgrado FIC, UMSNH. Maestría en Infraestructura del Transporte. --------------------------------------------------------------------------------------------------------------

CAPÍTULO 3
DISTRIBUCIÓN DE PRESIONES EN LA MASA DE SUELO.
a) CONDICIÓN NATURAL (Suelo sin Carga).- En esta parte se obtendrá las distribuciones de las presiones verticales debido al peso del material.
N.A.F σv= γm z zσ=p (Presión total) u (t/m2) + σ´ (t/m2) = σ (t/m2)

H

γm H

γo H

γm H- γo H (γm - γo )H

γm H

En este capítulo se trata de determinar los esfuerzos que existen en una masa de suelo, como resultado del peso propio y por efecto de las fuerzas aplicadas. Ejemplo a1: Dibujar los diagramas de presiones totales, efectivas y del agua para el siguiente caso:
σ=p (Presión total) a) arenau (t/m2) + σ´ (t/m2) = σ (t/m2)

H

b) limo arenoso

c) arcilla

γm H

γo H

γm H- γo H (γm - γo )H

γm H

a) γm=1.7 t/m3 b) γm=1.5 t/m3 c) γm=1.4 t/m3 Ejemplo a2: Un deposito de arena muy fina tiene 12 m de espesor. El N.A.F. está a 4 m de profundidad, pero sobre él la arena está saturada por capilaridad. El peso específico de la arena saturada es de 1, 800 kg/m3. ¿Cual es lapresión efectiva vertical sobre un plano horizontal a la profundidad de 12 m? Ejemplo a3: Se tiene la estratigrafía de un cierto lugar, como se muestra en la figura siguiente, en la superficie del suelo se coloca un relleno que produce una sobrecarga de 7 t/m2. El N.A.F. está a 3.0m de profundidad, pero sobre el la arena fina limosa esta saturada por capilaridad, hasta la superficie. Determine losdiagramas u, σv´ y σv para: a) Antes de colocar el relleno b) Inmediatamente después de colocado el relleno. M. en I. Felipe de Jesús Jerónimo Rodríguez Pagina 1

Posgrado FIC, UMSNH. Maestría en Infraestructura del Transporte. -------------------------------------------------------------------------------------------------------------b) DISTRIBUCIÓN DE PRESIONES O DE ESFUERZOS DEBIDOS ASOBRECARGAS.- En este tema se trata el problema de la distribución de esfuerzos aplicados en la superficie de una masa de suelo a todos los puntos de esa masa. Las soluciones que actualmente se aplican, están basadas en la teoría de La Elasticidad, las cuales adolecen de efectos prácticos acarreados por las fuertes hipótesis impuestas por las necesidades de la solución matemática. De estas soluciones lamás utilizada es la debida a Boussinesq. Planteamiento del problema: Sobrecarga
∆σ´ (t/m2) σ=p (Presión total) ∆H σ´ + ∆σ σz ∆σ (t/m2) (t/m2)

z
H γm

γm H- γo H (γm - γo )H

El cambio en los esfuerzos efectivos produce asentamientos en el suelo (∆H).

b.1) El Problema de Boussinesq.El problema trata de la distribución de esfuerzos con la profundidad debidos a una carga vertical concentradaactuante en la superficie horizontal de un medio, con la siguientes hipótesis: 1. El medio es elástico, homogéneo, isótropo, semi-infinito y obedece a la Ley de Hooke. 2. El medio no tiene peso propio. 3. El medio no tiene historia previa de esfuerzos. 4. La distribución de esfuerzos es independiente del tipo de material del medio. 5. En el medio es válida una distribución de esfuerzos lineal 6.Existe continuidad de esfuerzos 7. La distribución de esfuerzos es simétrica con respecto al eje z. O mejor dicho: El medio es semi-infinito El medio es homogéneo, es decir; en todo punto E, ν son iguales El medio es isótropo, es decir E es el mismo en cualquier dirección El material es linealmente elástico: Se cumple la Ley de Hooke: M. en I. Felipe de Jesús Jerónimo Rodríguez Pagina 2 Posgrado FIC, UMSNH. Maestría en Infraestructura del Transporte. -------------------------------------------------------------------------------------------------------------σ = Eε

El esfuerzo en A vale:

σz =

3P Z 3 2π R 5

Como: R = r 2 + z 2

σZ =

3P Z3 3P Z5 3P 1 = = 5 2 5 2 2π (r 2 + z 2 ) 2 2πZ (r 2 + z 2 ) 2 2πZ (r 2 + z 2 ) 5 2 z5     3P 1  1  = 2π Z 2   r  2  1 + ...
tracking img