Mecanica relativista

Mecánica relativista: Teoría general de la relatividad

Representación esquemática bidimensional de la deformación del espacio-tiempo en el entorno de la Tierra.
Albert Einstein revisó la teoría newtoniana en su teoría de la relatividad general, describiendo lea interacción gravitatoria como una deformación de la geometría del espacio-tiempo por efecto de la masa de los cuerpos; el espacio yel tiempo asumen un papel dinámico.
Según Einstein, no existe el empuje gravitatorio; dicha fuerza es una ilusión, un efecto de la geometría. Así, la Tierra deforma el espacio-tiempo de nuestro entorno, de manera que el propio espacio nos empuja hacia el suelo. Una hormiga, al caminar sobre un papel arrugado, tendrá la sensación de que hay fuerzas misteriosas que la empujan hacia diferentesdirecciones, pero lo único que existe son pliegues en el papel, su geometría.[3]
La deformación geométrica viene caracterizada por el tensor métrico que satisface las ecuaciones de campo de Einstein. La "fuerza de la gravedad" newtoniana es sólo un efecto asociado al hecho de que un observador en reposo respecto a la fuente del campo no es un observador inercial y por tanto al tratar de aplicar elequivalente relativista de las leyes de Newton mide fuerzas ficticias dadas por los símbolos de Christoffel de la métrica del espacio tiempo.

Cálculo relativista de la fuerza aparente

En presencia de una masa esférica, el espacio-tiempo no es plano sino curvo, y el tensor métrico g que sirve para calcular las distancias viene dado en coordenadas (t,r,?,f), llamada métrica de Schwarschild:[pic]
donde G es la constante de gravitación universal, M es la masa de la estrella, y c es la velocidad de la luz. La ecuación de las geodésicas dará la ecuación de las trayectorias en el espacio-tiempo curvo, si se considera una partícula en reposo respecto a la masa gravitatoria que crea el campo se tiene que, esta seguirá una trayectoria dada por las ecuaciones:
[pic]
La primera deestas ecuaciones da el cambio de la coordenada radial, y la segunda da la dilatación del tiempo respecto a un observador inercial, situado a una distancia muy grande respecto a la masa que crea el campo. Si se particularizan esas ecuaciones para el instante inicial en que la partícula está en reposo y empieza a moverse desde la posición inicial, se llega a que la fuerza aparente que mediría unobservador en reposo viene dada por:
[pic]
Esta expresión coincide con la expresión de la teoría newtoniana si se tiene en cuenta que la dilatación del tiempo gravitatoria para un observador dentro de un campo gravitatorio y en reposo respecto a la fuente del campo viene dado por:
[pic]

Ondas gravitatorias

Además, la relatividad general predice la propagación de ondasgravitatorias. Estas ondas sólo podrían ser medibles si las originan fenómenos astrofísicos violentos, como el choque de dos estrellas masivas o remanentes del Big Bang. Estas ondas han sido detectadas de forma indirecta en la variación del periodo de rotación de púlsares dobles. Por otro lado, las teorías cuánticas actuales apuntan a una "unidad de medida de la gravedad", el gravitón, como partícula queprovoca dicha "fuerza", es decir, como partícula asociada al campo gravitatorio.

Efectos gravitatorios

Con la ayuda de esta nueva teoría, se pueden observar y estudiar una nueva serie de sucesos antes no explicables o no observados:
• Desviación gravitatoria de luz hacia el rojo en presencia de campos con intensa gravedad: la frecuencia de la luz decrece al pasar por una región de elevadagravedad. Confirmado por el experimento de Pound y Rebka (1959).
• Dilatación gravitatoria del tiempo: los relojes situados en condiciones de gravedad elevada marcan el tiempo más lentamente que relojes situados en un entorno sin gravedad. Demostrado experimentalmente con relojes atómicos situados sobre la superficie terrestre y los relojes en órbita del Sistema de Posicionamiento Global...
tracking img