Metodo de elementos finitos

Solo disponible en BuenasTareas
  • Páginas : 18 (4331 palabras )
  • Descarga(s) : 0
  • Publicado : 26 de febrero de 2011
Leer documento completo
Vista previa del texto
Introducción [editar]
El método se basa en dividir el cuerpo, estructura o dominio (medio continuo) —sobre el que están definidas ciertas ecuaciones integrales que caracterizan el comportamiento físico del problema— en una serie de subdominios no intersectantes entre sí denominados «elementos finitos». El conjunto de elementos finitos forma una partición del dominio también denominadadiscretización. Dentro de cada elemento se distinguen una serie de puntos representativos llamados «nodos». Dos nodos son adyacentes si pertenecen al mismo elemento finito; además, un nodo sobre la frontera de un elemento finito puede pertenecer a varios elementos. El conjunto de nodos considerando sus relaciones de adyacencia se llama «malla».
Los cálculos se realizan sobre una malla o discretizacióncreada a partir del dominio con programas especiales llamados generadores de mallas, en una etapa previa a los cálculos que se denomina pre-proceso. De acuerdo con estas relaciones de adyacencia o conectividad se relaciona el valor de un conjunto de variables incógnitas definidas en cada nodo y denominadas grados de libertad. El conjunto de relaciones entre el valor de una determinada variable entrelos nodos se puede escribir en forma de sistema de ecuaciones lineales (o linealizadas). La matriz de dicho sistema de ecuaciones se llama matriz de rigidez del sistema. El número de ecuaciones de dicho sistema es proporcional al número de nodos.
Típicamente el método de los elementos finitos se programa computacionalmente para calcular el campo de desplazamientos y, posteriormente, a través derelaciones cinemáticas y constitutivas las deformaciones y tensiones respectivamente, cuando se trata de un problema de mecánica de sólidos deformables o más generalmente un problema de mecánica de medios continuos. El método de los elementos finitos es muy usado debido a su generalidad y a la facilidad de introducir dominios de cálculo complejos (en dos o tres dimensiones). Además el método esfácilmente adaptable a problemas de transmisión de calor, de mecánica de fluidos para calcular campos de velocidades y presiones (mecánica de fluidos computacional, CFD) o de campo electromagnético. Dada la imposibilidad práctica de encontrar la solución analítica de estos problemas, con frecuencia en la práctica ingenieril los métodos numéricos y, en particular, los elementos finitos, se convierten enla única alternativa práctica de cálculo.
Una importante propiedad del método es la convergencia; si se consideran particiones de elementos finitos sucesivamente más finas, la solución numérica calculada converge rápidamente hacia la solución exacta del sistema de ecuaciones.
Resumen Histórico [editar]
Cuando se produce la llegada de los primeros ordenadores en la década de los 50, el cálculode estructuras se encontraba en un punto en el que los métodos de cálculo predominantes consistían en técnicas de iteración (métodos de Cross y Kani) que se realizaban de manera manual y por tanto resultaban bastante tediosos. El cálculo de una estructura de edificación de varios pisos, por ejemplo, podía llevar varias semanas, lo cual suponía un coste sustancial de tiempo en detrimento de laposibilidad de invertir este en la optimización de la estructura.
La llegada de la computadora permitió el resurgimiento del método de los desplazamientos ya conocidos en siglos anteriores (Navier, Lagrange, Cauchy), pero que eran difíciles de aplicar dado que al final conducían a la resolución de enormes sistemas de ecuaciones inabordables desde el punto de vista manual.
El Método de ElementosFinitos (MEF) fue al principio desarrollada en 1943 por R. Courant, quien utilizó el método Ritz de análisis numérico y minimización de las variables de cálculo para obtener soluciones aproximadas a un sistema de vibración. Poco después, un documento publicado en 1956 por M. J. Turner, R. W. Clough, H. C. Martin, y L. J. Topp estableció una definición más amplia del análisis numérico. El documento...
tracking img