Números complejos

Solo disponible en BuenasTareas
  • Páginas : 7 (1637 palabras )
  • Descarga(s) : 0
  • Publicado : 5 de septiembre de 2012
Leer documento completo
Vista previa del texto
Números Complejos

Unidad imaginaria:Se llama así al número [pic]y se designa por la letra i.

[pic]

Números imaginarios:Un número imaginario se denota por bi, donde :b es un número real,e i es la unidad imaginaria.Con los números imaginarios podemos calcular raíces con índice par y radicando negativo.

x2 + 9 = 0
[pic]

Potencias de la unidad imaginaria

i0 = 1 i1 = i i2 =−1 i3 = −i i4 = 1  
Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto vale una determinada potencia de i, se divide el exponente entre 4, y el resto es el exponente de la potencia equivalente a la dada.
i22
[pic]
i22 = (i4)5 · i2 = − 1

Números complejos en forma binómica

Al número a + bi le llamamos número complejo en forma binómica.
El número a se llama partereal del número complejo.
El número b se llama parte imaginaria del número complejo.
Si b = 0 el número complejo se reduce a un número real ya que a + 0i = a.
Si a = 0 el número complejo se reduce a bi, y se dice que es un número imaginario puro.
El conjunto de todos números complejos se designa por [pic].
[pic]
Los números complejos a + bi y −a − bi se llaman opuestos.
Los númeroscomplejos z = a + bi y z = a − bi se llaman conjugados.
Dos números complejos son iguales cuando tienen la misma componente real y la misma componente imaginaria.

Representación gráfica de números complejos

Los números complejos se representan en unos ejes cartesianos. El eje X se llama eje real y el Y, eje imaginario. El número complejo a + bi se representa:
Por el punto (a,b), que se llamasu afijo,
[pic]z
Los afijos de los números reales se sitúan sobre el eje real, X. Y los imaginarios sobre el eje imaginario, Y.
[pic]

Operaciones con números complejos en la forma binómica


Suma y diferencia de números complejos

La suma y diferencia de números complejos se realiza sumando y restando partes reales entre sí y partes imaginarias entre sí.
(a + bi) + (c + di) = (a +c) + (b + d)i (a + bi) − (c + di) = (a − c) + (b − d)i
(5 + 2i) + ( − 8 + 3i) − (4 − 2i) = (5 − 8 − 4) + (2 + 3 + 2)i = −7 + 7i

Multiplicación de números complejos

El producto de los números complejos se realiza aplicando la propiedad distributiva del producto respecto de la suma y teniendo en cuenta que i2 = −1.
(a + bi) · (c + di) = (ac − bd) + (ad + bc)i
(5 + 2i) · (2 − 3i) =10 −15i + 4i − 6 i2 = 10 − 11i + 6 = 16 − 11i
División de números complejos
El cociente de números complejos se hace racionalizando el denominador; esto es, multiplicando numerador y denominador por el conjugado de éste.
[pic]
[pic]

Números complejos en forma polar


Módulo de un número complejo

El módulo de un número complejo es el módulo del vector determinado por el origen decoordenadas y su afijo. Se designa por |z|.
[pic]
[pic]
[pic]

Argumento de un número complejo

El argumento de un número complejo es el ángulo que forma el vector con el eje real. Se designa por arg(z).
[pic].

Expresión de un número complejo en forma polar. z = rα


Números complejos en forma trigonométrica.

A partir de la forma polar es muy fácil pasar a una nueva forma denominadatrigonométrica.
a + bi = rα = r (cos α + i sen α)
[pic]
[pic]

Ejemplos: Pasar a la forma polar y trigonométrica:

|[pic] |[pic] |
|[pic] |[pic] |
|[pic] z =260º = 2(cos 60º + i sen 60º) |[pic]z = 2120º |
| |=2(cos 120º + i sen 120º) |
|[pic] |[pic] |
|[pic]...
tracking img