Numero phi, e y pi

Solo disponible en BuenasTareas
  • Páginas : 13 (3024 palabras )
  • Descarga(s) : 0
  • Publicado : 4 de junio de 2011
Leer documento completo
Vista previa del texto
El número π

Introducción al número π:

Π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El valor numérico de π, truncado a sus primeras cifras, es el siguiente:

El valor de π se ha obtenido condiversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e. Por ello, tal vez sea la constante que más pasiones desata entre los matemáticos profesionales y aficionados. La relación entre la circunferencia y su diámetro no es constante en geometrías no euclídeas.-------------------------------------------------

-------------------------------------------------
El nombre π:
-------------------------------------------------
La notación con la letra griega π proviene de la inicial de las palabras de origen griego"περιφέρεια" (periferia) y "περίμετρον" (perímetro) de un círculo, notación que fue utilizada primero por William Oughtred, y propuesto su uso por el matemático galés WilliamJones. Fue conocida anteriormente como constante de Ludolph o como constante de Arquímedes.
-------------------------------------------------
 
-------------------------------------------------
Historia del cálculo del valor π

La búsqueda del mayor número de decimales del número π ha supuesto un esfuerzo constante de numerosos científicos a lo largo de la historia. Algunas aproximacioneshistóricas de π son las siguientes.
El valor aproximado de π en las antiguas culturas se remonta a la época del escriba egipcio Ahmes en el año 1800 a. C., descrito en el papiro Rhind, donde se emplea un valor aproximado de π afirmando que: el área de un círculo es similar a la de un cuadrado, cuyo lado es igual al diámetro del círculo disminuido en 1/9, es decir, igual a 8/9 del diámetro. En notaciónmoderna:

Entre los ocho documentos matemáticos hallados de la antigua cultura egipcia, en dos se habla de círculos. Uno es el papiro Rhind y el otro es el papiro de Moscú. Sólo en el primero se habla del valor aproximado del número π. El investigador Otto Neugebauer, en un anexo de su libro The Exact Sciences in Antiquity, describe un método inspirado en los problemas del papiro de Ahmes paraaveriguar el valor de π, mediante la aproximación del área de un cuadrado de lado 8, a la de un círculo de diámetro 8.

Antigüedad clásica
El matemático griego Arquímedes (siglo III a. C.) fue capaz de determinar el valor de π, entre el intervalo comprendido por 3 10/71, como valor mínimo, y 3 1/7, como valor máximo. Con esta aproximación de Arquímedes se obtiene un valor con un error que oscilaentre 0,024% y 0,040% sobre el valor real. El método usado por Arquímedes era muy simple y consistía en circunscribir e inscribir polígonos regulares de n-lados en circunferencias y calcular el perímetro de dichos polígonos. Arquímedes empezó con hexágonos circunscritos e inscritos, y fue doblando el número de lados hasta llegar a polígonos de 96 lados.
Alrededor del año 20 d. C., el arquitecto eingeniero romano Vitruvio calcula π como el valor fraccionario 25/8 midiendo la distancia recorrida en una revolución por una rueda de diámetro conocido.
En el siglo II, Claudio Ptolomeo proporciona un valor fraccionario por aproximaciones:

Renacimiento europeo
A partir del siglo XII, con el uso de cifras arábigas en los cálculos, se facilitó mucho la posibilidad de obtener mejores cálculospara π. El matemático Fibonacci, en su «Practica Geometriae», amplifica el método de Arquímedes, proporcionando un intervalo más estrecho. Algunos matemáticos del siglo XVII, como Viète, usaron polígonos de hasta 393.216 lados para aproximarse con buena precisión a 3,141592653. En 1593 el flamenco Adriaan van Roomen obtiene una precisión de 16 dígitos decimales usando el método de Arquímedes....
tracking img