Pelarme la verga

Solo disponible en BuenasTareas
  • Páginas : 5 (1105 palabras )
  • Descarga(s) : 7
  • Publicado : 1 de agosto de 2010
Leer documento completo
Vista previa del texto
vr
Funcion
Una función es una relación o correspondencia entre dos magnitudes, de manera que a cada valor de la primera le corresponde un único valor de la segunda (o ninguno), que llamamos imagen o transformado.
El término función fue usado por primera vez en 1637 por el matemático francés René Descartes para designar una potencia xn de la variable x. En 1694 el matemático alemán GottfriedWilhelm Leibniz utilizó el término para referirse a varios aspectos de una curva, como su pendiente. Hasta recientemente, su uso más generalizado ha sido el definido en 1829 por el matemático alemán, J.P.G. Lejeune-Dirichlet (1805-1859), quien escribió: "Una variable es un símbolo que representa un número dentro de un conjunto de ello.  Dos variables X y Y están asociadas de tal forma que al asignarun valor a X entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a Y, se dice que Y es una función (unívoca) de X.  La variable X, a la que se asignan libremente valores, se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama variables dependientes.  Los valores permitidos de X constituyen el dominio de definición de lafunción y los valores  que toma Y constituye su recorrido".

CLASIFICACION DE LAS FUNCIONES
• Función Inyectiva:
Una función es inyectiva si cada f(x) en el recorrido es la imagen de exactamente un único elemento del dominio. En otras palabras, de todos los pares (x,y) pertenecientes a la función, las y no se repiten.
Para determinar si una función es inyectiva, graficamos la función pormedio de una tabla de pares ordenados. Luego trazamos líneas horizontales para determinar si las y (las ordenadas) se repiten o no.
Ejemplo:
 
• Función Sobreyectiva:
Sea f una función de A en B , f es una función epiyectiva (tambien llamada sobreyectiva) , si y sólo si cada elemento de B es imagen de al menos un elemento de A , bajo f .
A elementos diferentes en un conjunto de partida lecorresponden elementos iguales en un conjunto de llegada. Es decir, si todo elemento R es imagen de algún elemento X del dominio.
Ejemplo:
A = { a , e , i , o , u }
B = { 1 , 3 , 5 , 7 }
f = { ( a , 1 ) , ( e , 7 ) , ( i , 3 ) , ( o , 5 ) , ( u , 7 ) }
Simbólicamente:
f: A B es biyectiva Û f es inyectiva y f es sobreyectiva
Ejemplo:
• Función Biyectiva:
Sea f una función de A en B , fes una función biyectiva , si y sólo si f es sobreyectiva e inyectiva a la vez .
Si cada elemento de B es imagen de un solo elemento de A, diremos que la función es Inyectiva. En cambio, la función es Sobreyectiva cuando todo elemento de B es imagen de, al menos, un elemento de A. Cuando se cumplen simultáneamente las dos condiciones tenemos una función BIYECTIVA.
Ejemplo:
A = { a , e , i , o, u }
B = { 1 , 3 , 5 , 7 , 9 }
f = { ( a , 5 ) , ( e , 1 ) , ( i , 9 ) , ( o , 3 ) , ( u , 7 ) }
Teorema:
Si f es biyectiva , entonces su inversa f - 1 es también una función y además biyectiva.
Ejemplo:
• Función Par:
Una función f: R!R es par si se verifica que
" x " R vale f(-x) = f(x)
Si f: R!R es una función par, entonces su gráfico es lateralmente simétrico respecto del ejevertical. “Simetría axial respecto de un eje o recta” (el dominio tiene que ser un conjunto simetrico respecto al origen)
Se dice que una función es par si f(x) = f(-x)
Ejemplo: La función y = x2 es par pues se obtienen los mismos valores de y independientemente del signo de x.
La función f(x)=x2 es par ya que f(-x) = (-x)2 =x2

Definición:  Las funciones lineales son polinomios de primer grado.Recordemos que los polinomios de primer grado tienen la variable elevada al exponente 1. Es habitual no escribir el exponente cuando este es 1.
Ejemplos de funciones lineales: a(x) = 2x+7        b(x) = -4x+3     f(x) =  2x + 5 + 7x - 3
De estas funciones, vemos que la f no está reducida y ordenada como las demás. Podemos reducir términos semejantes para que la expresión quede de una forma...
tracking img