Polillita

Solo disponible en BuenasTareas
  • Páginas : 45 (11228 palabras )
  • Descarga(s) : 0
  • Publicado : 27 de noviembre de 2011
Leer documento completo
Vista previa del texto
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR

GUÍA DE ESTUDIO PARA MATEMÁTICAS II (ÁLGEBRA Y GEOMETRÍA)

Elaborada por los profesores: Josué Barrios Agapito Gpe. Xochitl Chávez Pérez Jorge Flores Serrano Rubén B. Reyes Torres Ma. de Lourdes Romero Miranda
Octubre de 2005

PRESENTACIÓN

Esta Guía contiene las cinco unidades del curso deMatemáticas II.

Para cada tema se señalan los objetivos, se da una breve explicación del tema, se exponen ejemplos resueltos y se proponen ejercicios, algunos con sus soluciones correspondientes, al final encontrarás la bibliografía sugerida.

Para que puedas tener éxito en tu examen, debes estudiar los ejemplos resueltos, resolver los ejercicios propuestos y verificar tus resultados. Si algún ejerciciono lo entiendes o no lo puedes resolver, puedes acudir con los profesores asesores que se encuentran en el edificio “R” junto a

psicopedagogía.

Finalmente, recuerda que: “El éxito está antes que el trabajo solo en el diccionario”.

2

ÍNDICE
Tema 1.FUNCIONES CUADRÁTICAS……………………………………………………………… 1.1 Funciones cuadráticas……………………………………………………………………………… 1.2 Gráficas de funcionescuadráticas………………………………………………………… 1.3 Problemas que involucran funciones cuadráticas………………………………… CONSTRUCCIONES GEOMÉTRICAS BÁSICAS……………………………… 2.1 Construcciones con regla y compás………………………………………………………… 2.2 Construcción de Triángulos……………………………………………………………………… 2.3 Circunferencia……………………………………………………………………………………………. CONGRUENCIA Y SEMEJANZA………………………………………………………... 3.1Congruencia…………………………………………………………………………………………………. 3.1.1 Rectas paralelas cortadas por una secante……………………………………….. 3.1.2 Ángulos interiores y exteriores de un triángulo……………………………… 3.2 Congruencia de triángulos……………………………………………………………………….. 3.3 Semejanza y teorema de Pitágoras……………………………………………………….. 3.3.1 Semejanza de triángulos………………………………………………………………………. 3.3.2 Teorema de Pitágoras…………………………………………………………………………… PERÍMETROS, ÁREAS Y VOLÚMENES……………………………………………… 4.1 Cálculo de perímetros, áreas yvolúmenes……………………………………………. ELEMENTOS DE TRIGONOMETRÍA …………………………………………………. 5.1 Razones trigonométricas para ángulos agudos…….……………………………… 5.2 Razones trigonométricas Recíprocas.…………………………………………………… 5.3 Valores inversos de las razones trigonométricas……………………………… 5.4 Identidades trigonométricas fundamentales……………………………………… 5.5 Ley de senos y cosenos…………………………………………………………………………….. Pag. 4 4 5 13 19 19 21 2729 29 29 32 39 44 44 50 55 55 61 62 65 66 76 78

2.-

3.-

4.-

5.-

Bibliografía……………………………………………………………………………………………………………….. 86

3

1.-

FUNCIONES CUADRÁTICAS

Objetivo: Identificar funciones cuadráticas, graficarlas y resolver problemas que involucren una función cuadrática.

1.1 Funciones cuadráticas

Definición: Una función cuadrática tiene la forma f ( x) = Ax 2 + Bx +C con
A≠0

EJEMPLOS DE FUNCIONES CUADRÁTICAS
1) 2) f ( x) = 5 x 2 + 3 x − 4
f ( x) = −7 x 2 + x + 3 x 2 1 4
A = 5, B = 3, C = −4

A = −7, B = 1, C =

1 4

3) 4) 5) 6)

f ( x) = − x 2 + f ( x) = x 2 − 3 f ( x) = 3 2 x 4

A = −1, B =
A = 1, B = 0,

3 , C=0 2
C = −3

A=

3 , B = 0, 4

C =0

f ( x) = x(2 x − 3)

A = 2, B = −3, C = 0

Recuerda que para que sea funcióncuadrática: Sólo se requiere que A ≠ 0

4

EJERCICIO
Indica cuáles de las siguientes expresiones representan una función cuadrática. 1) 2) 3) 4) 5)
f ( x ) = −2 x + 3

6)
1 3

f ( x ) = (− x + 8) x

f ( x ) = −7 x 2 + 3 x −

7) 8) 9) 10)

f ( x) = 25 x 2 − 2 x

f ( x) = (− x) 2

f ( x) = − x + 1 f ( x ) = −2 x 2 + 1 f ( x) = −4 + 3 x

3 f ( x) = − x 2 + 2 5 f ( x ) = −7 x +x 2

Solución: Representan funciones cuadráticas: 2, 3, 4, 5, 6, 7 y 9.

1.2 Graficas de funciones cuadráticas

La gráfica de una función cuadrática es una parábola. Para graficar una función cuadrática uno de los métodos es tabular algunos valores de “ x ” y obtener los correspondientes valores de “ y ” para obtener algunos...
tracking img