Polinomio y ecuación característica

Solo disponible en BuenasTareas
  • Páginas : 4 (807 palabras )
  • Descarga(s) : 0
  • Publicado : 15 de noviembre de 2010
Leer documento completo
Vista previa del texto
DEFINICIÓN DE VALORES Y VECTORES CARACTERISTICOS DE UNA MATRIZ CUADARADA

Valores propios y vectores propios


* El cálculo de los valores propios y de los vectores propios de una matrizsimétrica tiene gran importancia en las matemáticas y en la ingeniería, entre los que cabe destacar, el problema de la diagonalización de una matriz, el cálculo de los momentos de inercia y de losejes principales de inercia de un sólido rígido, o de las frecuencias propias de oscilación de un sistema oscilante.
Se denominan valores propios o raíces características de una matriz cuadrada A, a losvalores de  tales que.

Desarrollando el determinante tenemos un polinomio de grado n. Trataremos de encontrar los coeficientes del polinomio, y luego aplicaremos un método de hallar las raícesdel polinomio. Este procedimiento es apropiado cuando se presentan valores propios que no son reales sino complejos.
Una vez hallados los valores propios, para hallar el vector propio X correspondienteal valor propio  es necesario resolver el sistema homogéneo

donde el vector X es Siempre podemos tomar x0 como 1, y hallar las otras n-1 incógnitas. De las n ecuaciones podemos tomar n-1, yresolver el sistema lineal.

El método de Leverrier
Dada una matriz cuadrada A de dimensión n. El polinomio característico de la matriz es

Los coeficientes se hallan mediante las siguientesrelaciones

                                          (1)

Los valores s1, s2, ... sn son las trazas de las potencias de la matriz cuadrada A.

La traza de una matriz es la suma de los elementos de sudiagonal principal.

POLINOMIO CARACTERÍSTICO

polinomio característico y encontrar sus raíces. Cada raíz de será un valor propio de . Los vectores propios pueden obtenerse directamente . Debidoa que los valores propios resultan ser las raíces del polinomio característico, éstos pueden ser reales o complejos, diferentes o repetidos.

Consideremos una matriz n-cuadrada arbitraria:...
tracking img